Lyle Creek Stream Restoration 2004 Annual Monitoring Report

- Delivered to: NCDENR/Ecosystem Enhancement Program 1619 Mail Service Center Raleigh, NC 27699-1619
- Prepared by: Biological & Agricultural Engineering Water Resources Research Institute North Carolina State University Campus Box 7625 Raleigh, NC 27695

February, 2005

2004 Lyle Creek Monitoring Abstract

Lyle Creek was enhanced/restored through the North Carolina Wetlands Restoration Program (NCWRP). The goals and objectives of this project are as follows.

- 1.) Restore 2,400 linear feet of an unnamed tributary to Lyle Creek.
 - a. Approximately 700 linear feet of Lyle Creek was enhanced through the use of bank stabilization and approximately 1244 linear feet was restored through natural channel design stream restoration. (amount measured as part of the monitoring)
- 2.) Enhance the riparian area through planting native species
- 3.) Exclude cattle access to the unnamed tributary to Lyle Creek and 800 linear feet of a secondary unnamed tributary.

This is the 2^{nd} year of the 5-year monitoring plan for Lyle Creek.

Project Name	Lyle Creek
Designer's Name	EcoScience Corporation
	1101 Haynes Street, Suite 101
	Raleigh, NC 27604
Contractor's Name	North State Environmental
Project County	Catawba County, North Carolina
Directions to Project Site	From Interstate I-40 take Exit 138. Head south on Oxford School Rd
	for 0.1 mile. Turn right on Wyke Rd follow Wyke Rd for 1 mile.
	Turn Right on US-70, follow US-70 for 0.2 mile. The project
	approximately located 1000ft upstream of the US-70 Bridge over
	Lyle Creek.
Drainage Area	0.5 sq. mi.
USGS Hydro Unit	3050101
NCDWQ Subbasin	Catawba River Basin
Project Length	2,400 Linear feet
Restoration Approach	~1,200-feet of dimension, pattern, and profile (restoration)
	~700-feet of bank and riparian
	enhancement (stabilization)
Date of Completion	July, 2002
Monitoring Dates	February, 2003 (AS-BUILT) ; November, 2003, July 2004

Table 1. Background Information

Results and Discussion

Overall, the majority of the stabilization stream project is functioning and is holding grade. The stream restoration section has major areas of concern that total greater than 325 linear feet and should be maintained as soon as possible. Table 2 shows a summary of monitoring measurement results. Overall, the restoration section is performing poorly and the stabilization section is performing well. Channel dimension, pattern, and profile are unstable and vary from the as-built conditions and the year 1 monitoring conditions. Vegetation is not succeeding to levels required for mitigation credit. Placed structures are holding grade and functioning well. The majority of the bank stabilization problems appear to be occurring because of the combination lack of deep rooting vegetation, the lack of root wads to stabilize the outside meander bends, and very tight radius of curvature for meander bends. The constructed stream in the restoration section STA 7+00 to 19+40 dose not appear to be stable.

Conditions	
of Channel	
Summary	
Table 2.	

DIMENSION		Lyle Creek			Lyle Creek			Lyle Creek			Lvle Creek		1	I vla Craek			1 to Coole			-	
	-T	In-Place Reach	'n		In-Place Reach	-ii	h	In-Place Reach	4	Reloc	Relocation Reach		Reloc	Relocation Reach		Relc	Lyle Cieck Relocation Reach	 	Dalo	Lyle Creek Pelootion Poorh	
	ڻ 	Cross-section #1	1#	0	Cross-section #2	#2	ວົ	Cross-section #3	5	Cros	Cross-section #4		Cros	Cross-section #5	•••••		Cross-section #6	7 4	Velo		
		Pool			Riffle			Riffle			Riffle			Riffle		1	Pool		50	Uross-section #/	
	As-built	2003	2004	As-built	2003	2004	As-built	2003	2004	As-built	2003	2004	A s-built	2003	2004	Ac built	2002	1000	$\mathbf{A} = 1$	anno	
Bankfull Cross-sectional Area	20.8	141	12.5	165	1 26	30.0	15.6	1 70		205	0	t			1007	111nn-SU	6004	2004	AS-DUIL	5002	2004
					1.02	2.25	0.01	1.02	4777	C./1	17.8	17.0	16.9	20.7	25.2	19.6	27.3	28.5	15.2	16.2	18.9
Banktull Width	16.3	16.5	13.7	11.8	18.6	18.6	13.2	16.2	17.1	10.8	10.8	10.8	10.7	13.9	13.8	12.8	13.5	157	c 11	c []	0
Bankfull Mean Depth	1.3	0.9	6.0	1.4	1.5	1.6	1.2	1.6	1.6	16	16	9	y I	1 4	0	2 1		0.			2.0
Bankfull May Denth	21	1 7		, ,	•			ľ				+		2	0.1		- 7	1.0	1.4	1.4	7.1
Indag your lingyang	1	T T	+'1	7.7	L	4.4	7.7	7.0	2.0	2.7	2.6	2.8	2.5	2.6	2.5	2.8	2.7	2.9	2.2	2.1	2.4
PALTERN		Lyle Creek			Lyle Creek	-		Lyle Creek		Lyle C	Lyle Creek (in place)	(e)	Lyle Ci	Lyle Creek (in place)	(e)	Lvle (Lyle Creek (in place)	(e)			
		As-built			2003			2004		-	As-built			2003	 \		2004	ì			
	Minimum	Maximum	Median	Minimum	Minimum Maximum Median Minimum Maximum Median	Median	Minimum	Minimum Maximum Median		Minimum Maximum Median	faximum	Median M	inimum M	aximum	Median	Minimum Maximum Median Minimum Maximum Median	Maximum	Madian			
Meander Wave Length	33	114	63	49	150	11	53	165	23	No	Not Reported		59	1 221	140	50	1 221	140			
Radius of Curvature	149	375	P 66	167	29 5	0.00	15.0	0 5 4	0.00							, ,		È			

						:										-	
	MIMIMUM	Minimum Maximum Median Minimum Maximum	Median	Minimum	Maximum	Median	Minimum	Maximum	Median	Median Minimum Maximum Median Minimum Maximum Median Minimum Maximum Median Minimum Maximum Median	Minimum	Maximum	Median	Minimum	Maximum	Madian	
Meander Wave Length	1 33	114	63	49	150	11	53	165	82	Not Reported	59	1 77 1	140	1 05	177	140	
Radius of Curvature 14.9	149	375	274	167	39.5	000	0.21	0 5 4	0.00				È	2		147	
		2.12		1.0.1	0.00	40.7	2.C1	4/.0	8.22	Not Reported	13.3	48.6	30.9	13.3	48.6	30.9	
Beltwidth	a 33	141	88	22	56	33	32	84	42	Not Reported	42	109	55	42	109	\$5	
														_	1 221	2	
PROFILE		Y 10 01.															
		This CLECK		-	Lyle Creek			Lyle Creek		Lyle Creek (in place)	Lyle Lyle	Lyle Creek (in place)	ice)	Lvle (Lyle Creek (in place)	ce)	
		As-built			2003			2004		As-built		2003		•	2004		
	Minimum	Minimum Maximum Median Minimum Maximum	Median	Minimum	Maximum	Median	Minimum Maximum Median	Maximum		Minimum Maximum Median	Minimum	Minimum Maximum Median	Madian	Minimum	Minim Manine Martin	Madine 1	
Riffla I anoth		Not Danortod		r		ļ		-				TINTITUTT	TIDINAT	TIMITTAT	UINTUIVETAT	MEUIAN	
Trans Ponga		אחו זאבאחו ובח		\ \	60	1/	/	78	15	Not Reported	6	68	21	0	89	10	
Riffle Slope	Riffle Slope 0.00% 3.64%	3.64%	1.41%	0.56%	4.94%	1.71%	0.65%	4.80%	2.10%	Not Reported	017%	4 74%	2 120%	0 1 70%	7077 1	7001 0	
Pool Length	14	64	27	6	41	23	0	41	23	Not Deported			0/11/1	~	0/1/7	2-1270	
									3	TAUL Nepulieu	11	47	17	=	49	21	
root to root Spacing	77 8	161	54	27	176	46	31	92	43	Not Reported	28	140	66	28	140	66	
															-		
CIDCTD ATC		-															
TINICOOC		Lyle Ureek			Lyle Creek		_	Lyle Creek		Lvle Creek		Jule Creek			T via Croat		7

SUBSIKALE		Lyle Creek			Lyle Creek			Lyle Creek		Ч	Lvle Creek			Lyle Creek		Ì	I via Craak	-		T ulo Coole	
	ర్	Cross-section #1	1#	Ũ	Cross-section #2	#2	Ű	Cross-section #3		Cro	Cross-section #4	4	Clo	Cross-section #5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Cros	Cross-section #6		٦. د	Prose-section #7	Ę
		Pool			Riffle			Riffle			Riffle			Riffle			Pool			Diffia	
	As-built	2003	2004	As-built	2003	2004	A c-built	2002	1000												
D50	0.09	0.29	0.33	0.19	0.29	0.07	0.19	0.45	0.08	0191	0 11	0.33	010	0.22	╁	1000	12.0	+	100-ext	C007	+007
20C	0.50	74.0		l	l							22.2	11.	CC'0	CO.1	60.0	V. / 1	07.0	0.19	9.34	0.41
C07		0/.0	0.00	16.01	15.33	0.31	15.91	1.01	0.40	15.91	3.11	79.40	15.91	17.52	8.64	0.52	31.78	19.80	15 91	3 00	0.71
		Quad 1			Quad 2			Quad 3			Ouad 4										
VEGETATION	1	Lyle Creek			Lyle Creek			Lyle Creek		Г	Lvle Creek										
	2004	2003	Planted	2004	2003	Planted	2004	2003	Planted	2004		Planted									
Tree Stratum (trees/acre)	720	720	0	520	520	4	600	600	240	12560	+	C									
Shrub Stratum (% cover)	1.0	1.0		1.0	1.0		8.5	8.5		15.5	15.5	, .									
Herb Stratum (%cover)	62.5	62.5	,	184	184	,	1715	171 \$		╈	152.5										

12560 15.5 152.2

12560 15.5 152.2

Lyle Creek

Lyle Creek

Lyle Creek

T C	000					
I ree Suatum (trees/acre)	120	120	0	520	520	40
Shrub Stratum (% cover)	1.0	1.0	•	1.0	1.0	,
Herb Stratum (%cover)	62.5	62.5	•	184	184	,
BEHI/NBS	Lyle Creek	Creek	Lyle Creek	Creek		
Average conditions	BEHI-03	NBS-03	BEHI-04	NBS-04		
	LOW	MOD	DOM	MOD		

The following areas of concern should be monitored closely and considered for repair as suggested:

- Easement Limits
 - NCEEP should work with landowners to ensure easement limits are maintained and that cattle stay out of the riparian area.
- Areas of major head cuts
 - There are two areas of major head cut totaling approximately 325 ft.
 - The first area has a maximum head cut of six inches and is approximately 200 ft in length. This head cut is located from station 10+25 to 12+25. There is still 175 ft upstream until the next structure controlling grade.
 - The second area has a maximum head cut of six inches and is approximately 125 ft in length. This head cut is located from station 15+25 to 16+50. There is still 350 ft upstream until the next structure controlling grade.
- Areas with bank erosion and slumping
 - The following meander bends have a high near NBS and very high BEHI rating for at least a 10 ft section on the outside of the meander bend.
 - @ STATIONS 9+50; 11+10; 11+50; 11+75; 12+90; 13+80; 16+20; 16+60; 16+80; 18+00; 18+50
 - All of these problem areas were located in the reach that was restored. The stabilized reach had some bank erosion but nothing that classified as high near NBS and very high BEHI.
 - These areas should be regarded and planted heavily with live stakes to help establish root mass along the channel bank. Root wads should also be considered for bank protection.
 - These areas should be monitored closely during upcoming site visits to determine if the problem is localized or regional in scale. The problems seem to be regional.
 - Overland flow is also causing bank erosion and may need to be routed away from areas that show signs of severe bank erosion.
- Areas lacking stream feature
 - There are twelve riffles that were constructed that do not exist in the longitudinal profile measured during the 2004 monitoring
 - There are four riffles that were monitored in 2003 that do not exist in the longitudinal profile measured during the 2004 monitoring
 - Some of the riffles that have been removed as a result of the major head cuts in the two sections listed above
 - The remainder of the failed riffles have transitioned into runs or glides
 - Most riffles that were constructed within 100 ft downstream of a cross vane with a drop greater than 0.5 ft were not observed during the 2004 monitoring survey
- Areas lacking stream pattern
 - There are two areas that have shown a significant change in stream pattern from the as-built conditions.
 - \circ The first section is from station 12+25 to 13+25 there is half of a meander wavelength that has been straightened into a long run this is the result of the head cut mentioned above.

- The second section is from station 17+50 to 18+50 there an entire meander wavelength that has been straightened into a run followed by a long step pool feature at the end of the project.
- The exact change in plan form could not be quantified with the 2003-2004 monitoring periods. The supplied as-built data for this project is not the same planform that was observed during the 2003-2004 monitoring periods.
- NCSU-BAE had reason to not include any of the as-built planform survey in the main body of this report. An extra plan sheet is located in the Appendix that displays the variation of planform from the As-built survey and the 2003 & 2004 monitoring periods.
- Vegetation Concerns
 - Natural regeneration appears to be dominant and should continue to be monitored for growth habitats.
 - Planting more trees if required for mitigation. At this time, the tree stems per acre count is 70 but there is good natural regeneration of trees.
 - It is recommended to stake in areas where excess erosion is occurring on the outside of meander bends
 - The invasive vegetation requires does treatment as soon as possible.
- Biological/Ecological Concerns
 - Biological data have been collected from this project twice following construction. Data from the 2003 investigation clearly note a decline in the biological condition of this stream. Taxa richness EPT and total and EPT abundance values were reduced from preconstruction conditions and both the Dominants in Common value and the number of keystone taxa were also reduced during this investigation. Some recovery was noted during the 2004 survey, but are still marginally worse than those conditions recorded from this stream prior to construction.

Photos

The following are photographs of typical sections and areas of concern throughout the project.

Lyle Creek

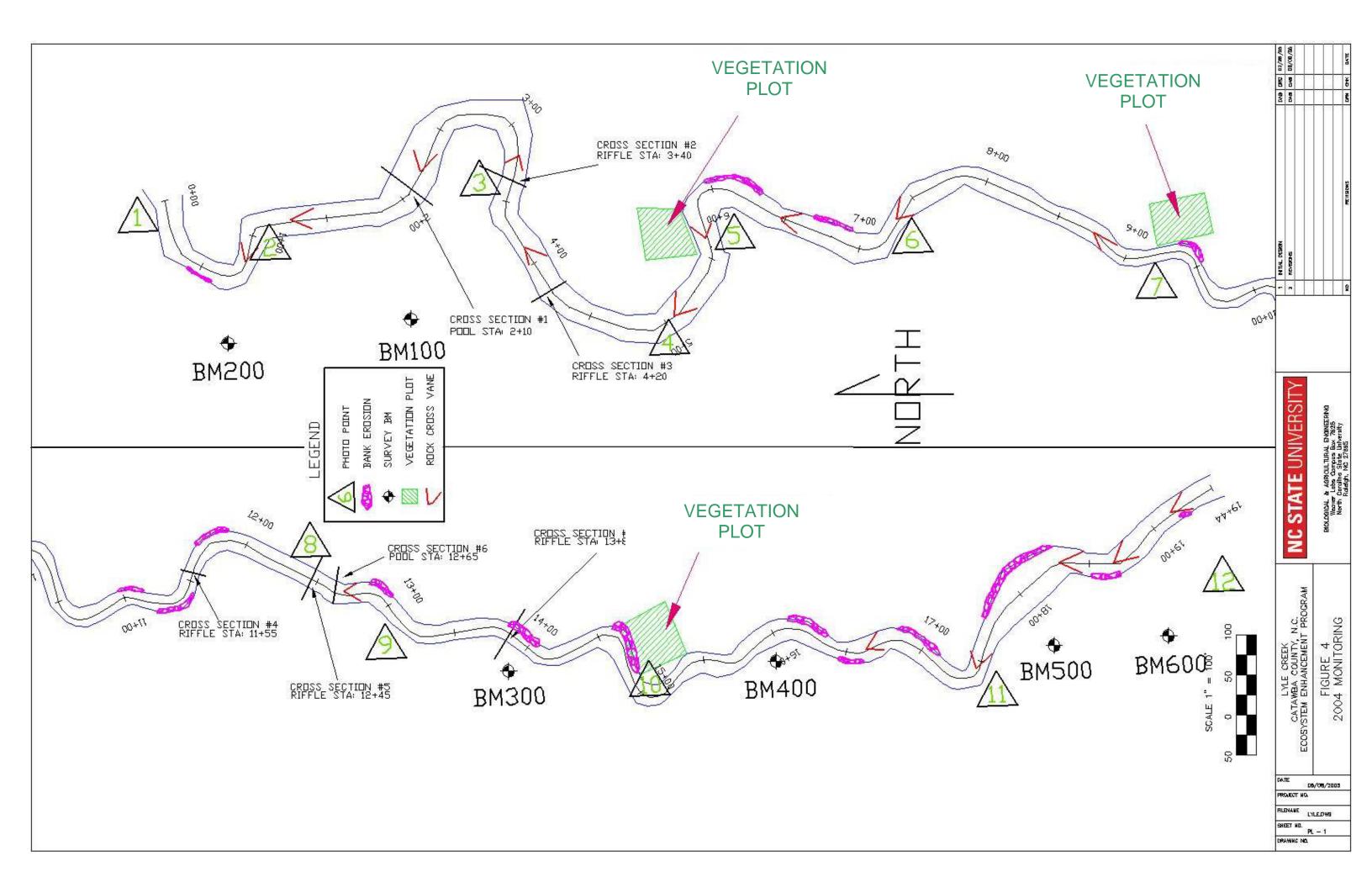
Typical Riffle on Lyle Creek.

Issue Photo 1 Lyle Creek Pool near station 9+40. Typical Bank Slump on Left Bank

Lyle Creek Pool near station 9+40. Typical Bank Slump on Left Bank

Typical Pool on Lyle Creek

Issue Photo 2 Lyle Creek Pool near station 11+90. Typical Bank Failure on Left Bank


Lyle Creek Pool near station 11+90. Typical Bank Failure on Left Bank

Issue Photo 3 Bank Erosion Outside Meander Bend Left Bank

Issue Photo 4 Cattle within the Lyle Creek Easement.

Table of Contents

2004 Lyle	e Creek Monitoring Abstracti
Table of	Contents
Table of '	Fables and Figures viii
1.0 B	ACKGROUND INFORMATION
1.1	Goals and Objective
1.2	Project Location
1.3	Reference Locations
1.4	Project Description
2.0 Y	EAR 2003 RESULTS AND DISCUSSION
2.1	Vegetation7
2.1.1	
2.2	Morphology
2.2.1	
2.3	Biological and Ecological
2.3.1	

Table of Tables and Figures

Figure 1. Project Location	3
Figure 2 Areal Watershed Photo	
Figure 3 Plan view of As-built conditions	5
Figure 4. Plan view of 2003 overlain on As-built	
Table 1. Summary of Results	
Figure 5 . Lyle Creek Profile	

1.0 BACKGROUND INFORMATION

The background information for this report is referenced from previous monitoring reports conducted by EcoScience, Inc. The following was excerpted from 2003 EcoScience As-built monitoring report:

The N.C. Wetlands Restoration Program (WRP) has developed a stream mitigations site within the northeastern Piedmont region of the Catawba River basin. As part of this effort, WRP has implemented detailed mitigation plans for the Lyle Creek Mitigation Site (hereafter referred to as the "Site"), an approximately 12.4-acre tract located along an unnamed tributary to Lyle Creek, approximately 3 miles west of the Catawba River. This region of the state is located within U.S. Geological Survey subbasin 03050101 (USGS 1974) (Figure 1). The Site is situated between U.S. Interstate Route 40 (I-40) and U.S. Route 70, approximately three miles west of the Catawba and Iredell County line.

The Site historically was utilized for agricultural hay production and livestock grazing. On-site streams are characterized as first- to second-order streams which have been degraded by past land uses, including vegetation clearing, dredging, straightening activities, and livestock trampling. Dredging and straightening appears to have been conducted to facilitate agricultural production and to expedite drainage from the Site. Straightening of the channel and channel instability from livestock trampling appears to have resulted in an entrenched stream channel with headcut migration occurring through the Site.

Stream mitigation activities have been designed to restore the stream features and functions similar to those exhibited by reference streams in the region. Site alterations designed to restore characteristic stream channel dimension, pattern, and profile include 1) installation of grade control/bank stabilization structures (cross vane weirs, J-hook vanes, and log vanes), excavation of bankfull benches, channel backfilling to design depth, bank stabilization through installation rootwad structures and erosion control matting, and excavation of channel on new location. Tree and shrub planting is expected to be conducted in the fall 2002 to facilitate the establishment of diagnostic natural communities. Vegetation planting has not been documented as part of this asbuilt report.

After implementation, the Site is expected to support 12.4 acres of riverine and adjacent slope forest encompassing 2,400 linear feet of restored stream channel (1,345 linear feet restored on new alignment and 1,055 linear feet restored in place). Stream enhancement/preservation activities will also be undertaken along approximately 800 linear feet of a secondary, unnamed tributary through bare root plantings and livestock exclusion.

1.1 Goals and Objective

The goals and objectives of this project are as follows.

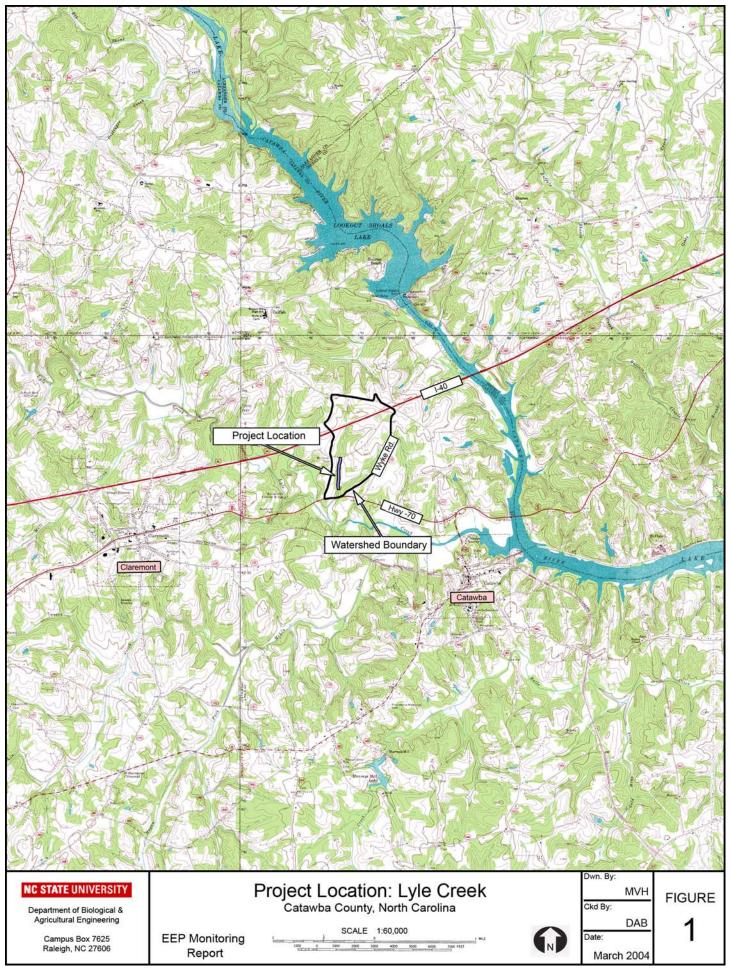
- 1.) Restore 2,400 linear feet of an unnamed tributary to Lyle Creek.
 - a. Approximately 700 linear feet of Lyle Creek was enhanced through the use of bank stabilization and approximately 1244 linear feet was restored through natural channel design stream restoration. (amount measured as part of the monitoring)
- 2.) Enhance the riparian area through planting native species

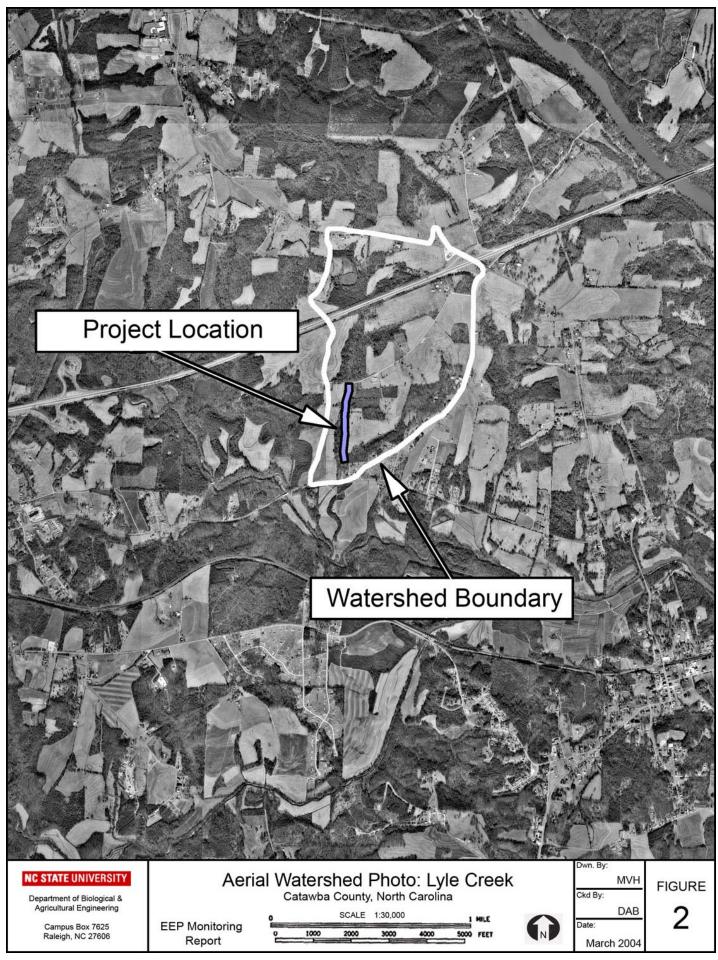
3.) Exclude cattle access to the unnamed tributary to Lyle Creek and 800 linear feet of a secondary unnamed tributary.

1.2 **Project Location**

From Interstate I-40 take Exit 138. Head south on Oxford School Rd for 0.1 mile. Turn right on Wyke Rd follow Wyke Rd for 1 mile. Turn Right on US-70, follow US-70 for 0.2 mile. The project approximately located 1000ft upstream of the US-70 Bridge over Lyle Creek.

1.3 Reference Locations


Information on Reference Streams to be provided by NCEEP.


1.4 Project Description

The restoration of 1244 linear feet (designed to be 1,345 linear feet) of Lyle Creek consists of relocating the existing channel away from a previously straightened ditch. Riffle-pool bedform was constructed as well as a stable meander pattern developed from stable reference streams. Riffles were stabilized utilizing by graded stone and there were no root wad, or armoring of any type to stabilize the outside meander bends. Vegetation was planted to establish a dense root mass along the stream banks and in the riparian zone.

An additional 700 linear feet (designed to be 1,055 linear feet) of Lyle Creek was enhanced with vegetation and bank stabilization structures. Structures include single rock vanes, a J-hook, cross vanes, and root wads. The entire length of Lyle Creek was also fenced to keep cattle out of the riparian area which included an additional 800 linear feet of a secondary unnamed tributary.

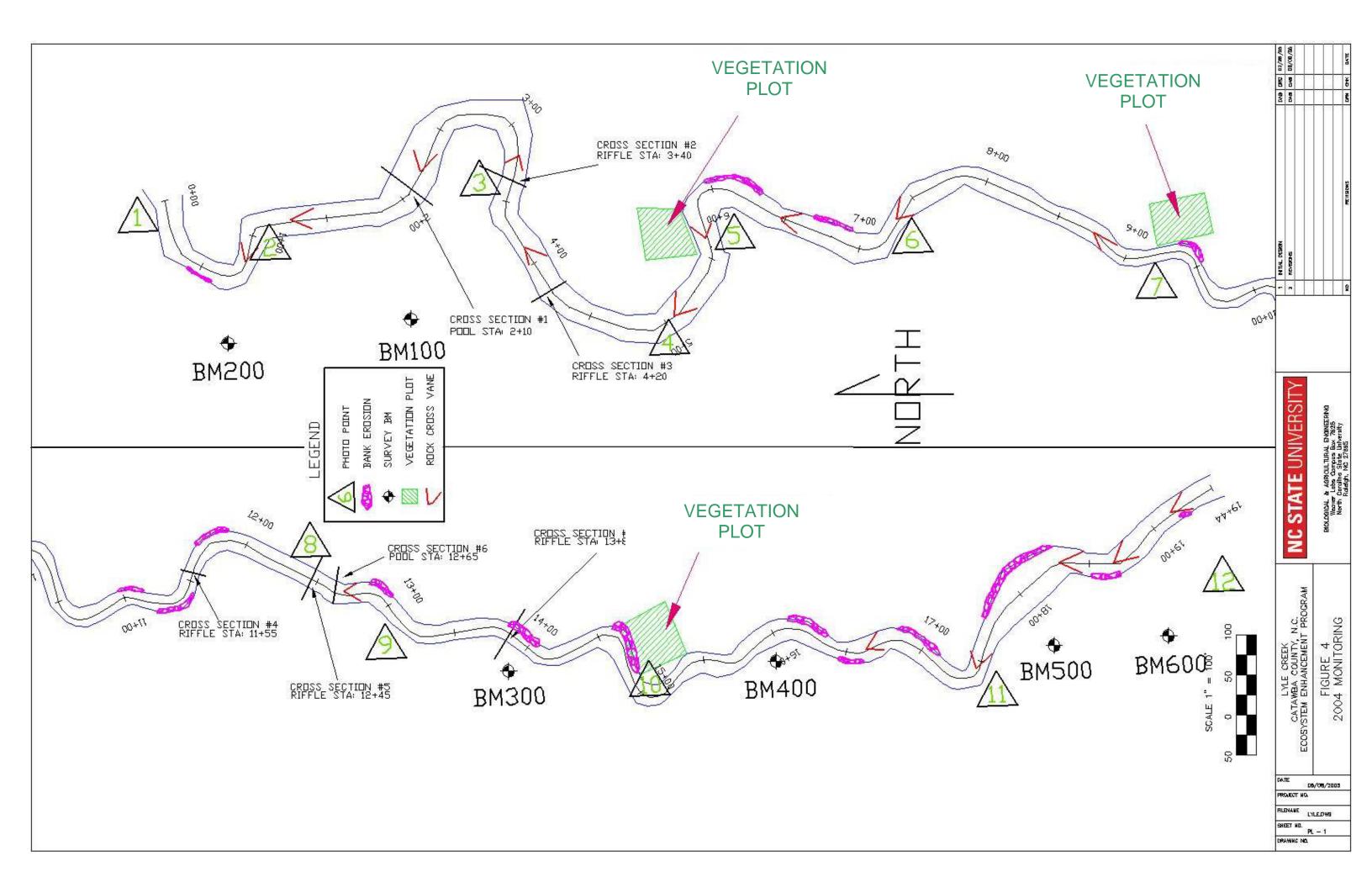

The entire riparian area was planted with native bare root seedlings and herbaceous cover to enhance the riparian areas and stabilize the streambanks. The relocated section included reconnecting a previously incised channel to its adjacent floodplain. The unrelocated section was not incised.

Figure 3 Plan view of As-built conditions

(To be attached) showing all structures with station numbers showing vegetation permanent plots showing permanent cross-sections and benchmarks showing vegetation plots showing monitoring gauges

2.0 YEAR 2004 RESULTS AND DISCUSSION

Year 2004 monitoring results are shown for Lyle Creek Monitoring.

2.1 Vegetation

2.1.1 Results and Discussion

Using the <u>Draft Vegetation Monitoring Plan for NCWRP Riparian Buffer and Wetland</u> <u>Restoration Projects</u>, 3 vegetation monitoring plots within the riparian buffer of the Lyle Creek project were resurveyed. No reference area was studied; therefore no comparisons could be made to reference conditions.

Vegetation within the riparian buffer of Lyle Creek is overall considered successful. The herbaceous layer was well established and diverse. *Panicum* spp. (deertongue and switchgrass) *Juncus* spp. (rushes) and *Carex* spp. (sedges) were most notably dominant throughout. Streambanks and floodplain areas were well covered with herbaceous plants, although *Microstegium vimineum* was more abundant throughout this year. Shrub species, particularly those sprouting from livestakes such as willows and dogwoods are performing well. In the majority of areas where livestakes were planted, they are alive and growing. There is also a large number of naturally regeneration shrub species throughout the project area.

Overall number of surviving planted trees was low. Extrapolation from the three plots resulted in an overall average of approximately 27 planted trees per acre for this restoration site. If natural regeneration is included with planted trees, the number is increased to an average of approximately 520 trees per acre. This is not surprising given that there is a healthy mature overstory covering most of the project site which contributes greatly to the native seedbank. Both of these estimates are based on a diverse mix of species as well. Natural regeneration obviously plays an important role in the restoration of this site. Further, this site lies mostly within a mature mixed hardwood stand. Roots from these mature trees were seen throughout the streambanks and presumably add a stability factor.

Wetland pockets throughout the riparian area also provide a diverse habitat for both plants and animals. These areas contained many different species of wetland plants and also serve as breeding grounds for numerous amphibians.

Microstegium vimineum was the only major invasive exotic plant located within these areas. In several plots it was the dominant herbaceous plant.

Recommendations include planting more trees required for mitigation. Natural regeneration appears to be dominant, however, and should continue to be monitored for growth habits. It is recommended to stake in areas where erosion is problematic in a few areas, particularly on outside meander bends. The invasive vegetation should also be monitored over time to determine if it will be a limiting factor in native plant growth in the future. No treatment is recommended at this time.

2.2 Morphology

Restored channel dimension, pattern, profile and substrate were examined during the 2004 monitoring.

2.2.1 Results and Discussion

New location Reach of Lyle Creek (Restoration Segment)

There are two areas of major concern in the restored section of Lyle Creek. The first area has a maximum head cut of six inches and is approximately 200 ft in length this head cut is located from station 10+25 to 12+25. There is still 175 ft upstream until the next structure controlling grade therefore, there is a potential for the headcut to migrate upstream. The second area has a maximum head cut of six inches and is approximately 125 ft in length. This head cut is located from station 15+25 to 16+50. There is still 350 ft upstream until the next structure controlling grade. The outside of meander bends on the relocated reach do not appear to be stable for the majority of the reach. Areas with bank erosion and slumping dominate the meander bends. The banks are currently a major source of sediment in the stream. The planform of the relocated stream does not appear to be stable. The average radius of curvature appears to be too tight for banks that are not well vegetated or armored. The localized bank erosion on the outside of meander bends is a result of the tight of radii. The bank erosion is enlarging the channel. When the channel becomes enlarged, a head cut (or downcutting) can start to develop. The head cut and increased Bank Height Ratio increases the already high shear stress. developed head cut will move upstream producing higher shear stress to remove bed features and bank material until it reaches a grade control (natural or constructed). It appears that the channel is moving toward instability rather than moving toward stability.

The number of defined riffles in the bedform of this reach has decreased from 20 in 2002, to 13 in 2003 and to 9 in 2004. The average riffle length has also decreased to 15 feet. This is also consistent with pebble count results which show a significant increase in fine particles since construction in the cross sections located within the head cut regions, and no significant change in the pebble count results from the other cross sections. Hardened riffle areas are not maintaining elevation throughout the entire relocated reach. The structures are maintaining the grade and, in general, look good. Most riffles that were constructed within 100 ft downstream of a cross vane with a drop greater than 0.5 ft were not observed during the 2004 monitoring survey. EcoScience profile results were recalculated using NCSU techniques for consistency purposes.

Cross-sections 4 through 7 were in the restored reach of Lyle creek. Cross Section #4 is in an area that has an active head cut. The cross sectional area has increased by 20% due to the head cut and bank erosion. The substrate has a large silt/clay fraction and the right bank of cross section #4 is bare and actively eroding. Cross sections #5 and #6 show slight enlargement but the exact location of these cross sections have varied because the previous cross sections were unable to be relocated. The substrate of cross sections #5 and #6 have a large silt/clay fraction, likely due to upstream bank erosion. The banks and profile of cross sections #5 and #6 appear to be stable. Future monitoring will be able to compare these two cross-sections with a high degree of confidence as they have now been clearly marked. Cross Section #7 is in an area that has an active head cut. The cross sectional area has increased due to the head cut and bank erosion by 30%. The substrate has a high silt/clay fraction and the left bank of cross section #7 is undercut and actively eroding.

Channel pattern appears to have been adjusting since construction. A few of the outside meander bends are experiencing migration through bank slumping but no excessive migration is evident and no shoot cut-offs are apparent.

In Place Reach of Lyle Creek (Stabilization Segment)

The reach of Lyle Creek that had channel stabilization activities appears to be aggrading slightly but the channel shows no signs of dimension, pattern, or profile concerns. There are three cross sections in this reach; cross section #1, cross section #2, and cross section #3. Cross Section #1 is a pool that has filled in since construction. The cross sectional area has decreased 40%. Both cross sections #2 and #3 have shown no significant changes between the 2003 and 2004 monitoring periods. There is no excessive migration in this reach and no shoot cut-offs are apparent. The response is what is expected when a bankfull bench is graded and the W/D ratio is increased. This reach appears to be performing well and has stable banks.

2.3 Biological and Ecological

Qual 4 surveys were conducted at three locations at this project (Table 7). Reference data were collected from a reach of Lyle Creek above the restoration reach (Site #1). The catchment at this point is mostly forested with relatively stable banks and a good riffle pool sequence; however, there are non-pont sources including stormwater above this location. The stream at this point was fairly incised but had some decent habitat including some bank habitat and stable gravel/cobble riffles. Site 2 is located near transect 110 at the lower reach of the restoration section and within a modified pasture. Cattle obviously had access to this reach of the stream as the banks were eroding and the substrate was more sandy/muddy. Site 3 is a very small tributary of Lyle Creek that hasn't receive any mitigation work to date. Data were collected from this site in anticipation of future construction. During the 2001 survey at this tributary site very few taxa were collected compared to the data from this site in 2003. This observation may be a result of very low flow during drought conditions prior to the 2001 survey. Data were collected from all three of these locations during December surveys following construction in 2003 and 2004.

Metrics/Location	Lyle C	r. #1, Ref	erence	I	Lyle Cr. #	2	UI	FLyle Cre	eek
Year of Investigation	12/2001	12/2003	12/2004	12/2001	12/2003	12/2004	12/2001	12/2003	12/2004
Total Taxa Richness	44	45	30	51	30	32	18	40	28
EPT Taxa Richness	16	22	14	17	9	14	3	16	12
EPT Abundance	94	114	71	84	33	51	30	62	42
Dominant in Common Index (%)	-	-	-	72%	34%	50%	n/a	n/a	n/a
# Keystone Taxa	10	10	12	7	4	8	0	9	5

It should be noted that the 2004 survey was after extremely high flows that were recorded following Hurricanes Francis and Ivan in this part of North Carolina. Bedload transport of material following these events likely was responsible for scouring of the substrate. Taxa richness values and EPT abundances were much lower at the reference site during the 2004 investigation. Interestingly this trend was not noticed at the restoration site (#2). At this location an increase in taxa richness, EPT abundance, number of keystone taxa and DIC were noted compared to those recorded at this site in 2003. This may indicate that this site has stabilized and is recovering from the construction. However, this is complicated by the potential bedload transport and habitat scour at the reference reach. The increase in EPT taxa richness at this location is primarily due to the increases in the number of mayflies and stoneflies. Very little differences were noted in the caddisfly fauna at this location between years. This may be, in part, due to the lack of drift responses in this community of insects. Lower numbers of insects were also noted at the UT location in 2004.

2.3.1 Results and Discussion

Biological data have been collected from this project twice following construction. Data from the 2003 investigation clearly note a decline in the biological condition of this feature. Taxa richness EPT and total and EPT abundance values were reduced from preconstruction conditions and both the Dominant in Common value and the number of keystone taxa were also reduced during this investigation.

ditions
S.
Channel
÷
Summary
Table

		Lyle Creek			Lyle Creek			Lyle Creek			Lyle Creek			Lvle Creek			I wle Creek			via Creek	
	ų	In-Place Reach	F	Ч	In-Place Reach	ch	н	In-Place Reach	ų	Rei	Relocation Reach	tch	Rel	Relocation Reach	ц.	Relc	Relocation Reach	 -	Pale	Lyte Cleek Relocation Peach	
	Cu	Cross-section #1	1	ບົ	Cross-section #2	#2	ს ს	Cross-section #3	¥3	ບັ	Cross-section #4	#4	Cre	Cross-section #5	50	Cr.C	Cross-section #6			Cross-section 1/2	
		Pool			Riffle			Riffle			Riffle			Riffle		5	Pool	,	5	Difflo	_
	As-built	2003	2004	A s-built	2003	2004	A c. built	1000	FUUC	A = 114											
Banbfull Cross sostioned Area F		1 1 1	201											2007	1007	171nn-er	C007	4004	AS-DULL	5007	2004
Training Cross-sectionial Area	0'N7	14.1	0.21	C.01	1.82	30.0	15.6	26.1	27.4	17.5	17.8	17.0	16.9	20.7	25.2	19.6	273	28.5	15.2	16.2	18.0
Bankfull Width	16.3	16.5	13.7	11.8	18.6	18.6	13.2	162	171	10.8	10.8	10.8	10.7	12.0	13.0	0 0 0				4.01	10.7
the construction of the second s											2.24	0.01	1.01	2.01	12.0	14.0	0.01	1.01	711	11.2	0,6
Dankiun Mean Depth	6.1	9.9	6.9	1.4	1.5	1.6	1.2	1.6	1.6	1.6	1.6	1.6	1.6	1.5	8	15	00	1 8	1 4	× -	- 0
Bankfull Max Depth	3.1	1.7	1.4	2.2	2.4	2.4	2.2	00	00	10	26	0 0	2 6		20						4.1
							414	2.4	7.7	4.1	4.0	6.2	C.2	7.0	C'7	7.8	2.7	2.9	2.2	2.1	2.4
																	ł				

1 2003 2004 As-built 2003 2003 2004 1 Median Minimum Maximum Median Minimum 2003 2004 63 49 150 71 53 165 82 Not Reported 59 177 149 59 177 22.4 16.7 38.5 209 15.9 47.0 22.8 Not Reported 13.3 48.6 59 137 48.6 88 22 56 33 32 84 42 Not Reported 13.3 48.6 13.3 48.6 109 13.3 48.6 109 13.3 48.6 109 13.3 48.6 109 13.4 48.6 109 13.3 48.6 109 13.3 48.6 109 13.3 48.6 109 13.3 48.6 109 14.6 109 13.3 48.6 109 13.3 48.6 109 13.3 48.6 109 13.7	FALLEKN		Lyle Creek	-		Lyle Creek		-	Lyle Creek		Lyle Creek (in place)	lace)	Lyle (Lyle Creek (in place)	ice)	Lyle Cr	Lyle Creek (in place)	()
Minimum Maximum Maximum Median Minimum Maximum Median Meander Wave Length 33 114 63 49 150 71 Radius of Curvature 14.9 37.5 22.4 16.7 38.5 20.9 Beltwidth 33 141 88 22 56 33 Lyle Creek Lyle Creek Lyle Creek Lyle Creek Lyle Creek		- Ander	As-built	_		2003			2004		As-built			2003		•	2004	
Meander Wave Length 33 114 63 49 150 71 Radius of Curvature 14.9 37.5 22.4 16.7 38.5 20.9 Beltwidth 33 141 88 22 56 33 Lyle Creek Lyle Creek Lyle Creek Lyle Creek Lyle Creek		Minimum	Maximum	Median	Minimum	Maximum	Median	Minimum	Maximum	Median	Minimum Maximum	Median	Minimum	Maximum	Median	Minimum M	faximum	Median
Radius of Curvature 14.9 37.5 22.4 16.7 38.5 20.9 15.9 47.0 22.8 Not Reported 13.3 48.6 30.9 13.3 48.6 Beltwidth 33 141 88 22 56 33 32 84 42 Not Reported 42 109 55	Meander Wave Length		114	63	49	150	11	53	165	82	Not Reported	-	59	177	149	59	177	140
Beltwidth 33 141 88 22 56 33 32 84 42 Not Reported 42 70.0 70.1 70.3<	Radius of Curvature		37.5	22.4	16.7	38.5	20.9	15.9	47.0	22.8	Not Reported		13.3	48.6	30.0	Т	707	20.0
Lyle Creek Lyle Creek <td>Beltwidth</td> <td>h 33</td> <td>141</td> <td>88</td> <td>22</td> <td>56</td> <td>33</td> <td>32</td> <td>10</td> <td>ć</td> <td>a the second sec</td> <td>+</td> <td></td> <td>2.01</td> <td></td> <td></td> <td>0.04</td> <td>2.00</td>	Beltwidth	h 33	141	88	22	56	33	32	10	ć	a the second sec	+		2.01			0.04	2.00
Lyle Creek Lyle Creek Lyle Creek Lyle Creek Iven Jave) Tyle Creek - Lyle Creek Iven Jave) - Tyle Creek Iven Jave)				3			2	- 7¢	+0	44	Not Keported	_	42	109	55	42	109	55
Lyle Creek Lyle Creek Lyle Creek T Je Creek T Lyle Creek																		
	PROFILE		Lyle Creek		-	Cyle Creek			vle Creek		Lyle Creek (in pl	lace)	T vla	Treek (in nlo	1 100	0 91:1	and the also	1

		As-built			2003	;	-	2004		As	As-built		2022	2003		try is cut	Lyre Creek (III place) 2004				
		Munimum Maximum Median Minimum Maximum Median	Median	Minimum	Maximum	Median	Minimum	Minimum Maximum Median	Median	Minimum Maximum Median Minimum Maximum Median Minimum Maximum Median	cimum Me	edian Min	imum Mar	ximum M	ledian M	linimum Ma	aximum N	fedian			
Riffle Length		Not Reported	q	7	39	17	7	28	15	Not R	Not Reported		6	68	21	6	68	10			
Riffle Slope	Riffle Slope 0.00%	3.64%	1.41%	0.56%	4.94%	1.71%	0.65%	4.80%	2.10%	Not R	Not Reported	0	0.17% 4	4.74% 2	%	017% 2		70C1 C			
Pool Length	14	64	27	6	41	23	6	41	23	Not R	Not Reported		┢	╀	+-	+	╇	2/2-1-6			
Pool to Pool Spacing	22	161	54	27	176	46	31	92	43	Not R	Not Reported		28	140	99	- ×c	140	έκ Έκ			
SUBSTRATE		I vle Creek			I via Creek			Tulo Crook		1.1.			,								
								TAIC CLECK		The	Lyle Lreek		Lyle	Lyle Creek		Ly.	Lyle Creek		ŝ	Lyle Creek	
	ر 	Cross-section #1		5	Cross-section #2	Ç1	ő	Cross-section #3	£	Cross-s	Cross-section #4		Cross-6	Cross-section #5		Cross-	Cross-section #6		Cross	Cross-section #7	2
			-					Riffle		22	Riffle		24	Riffle			Pool			Riffle	
	As-	5	8	As-built	2003	2004	As-built	2003	2004	As-built 20	2003 2	2004 As-	As-built 2	2003 2	2004	As-built	2003	2004	As-built	2003	2004
DSO	0.09	9 0.29	0.33	0.19	0.29	0.07	0.19	0.45	0.08	0.19	0.11	0.33	0.19	0.33	1 05	60.0	0.71	0.76	0 10	0 3.4	14.0
Doc	000	100	~~~~		00 0.											2212	1112	24.2	~ * * *	1	

2004 0.41 0.71

0.26 2004

> 0.71 31.78

0.09 As-built

1.05 8.64

2004 0.33 79.40

As-built 0.19 15.91

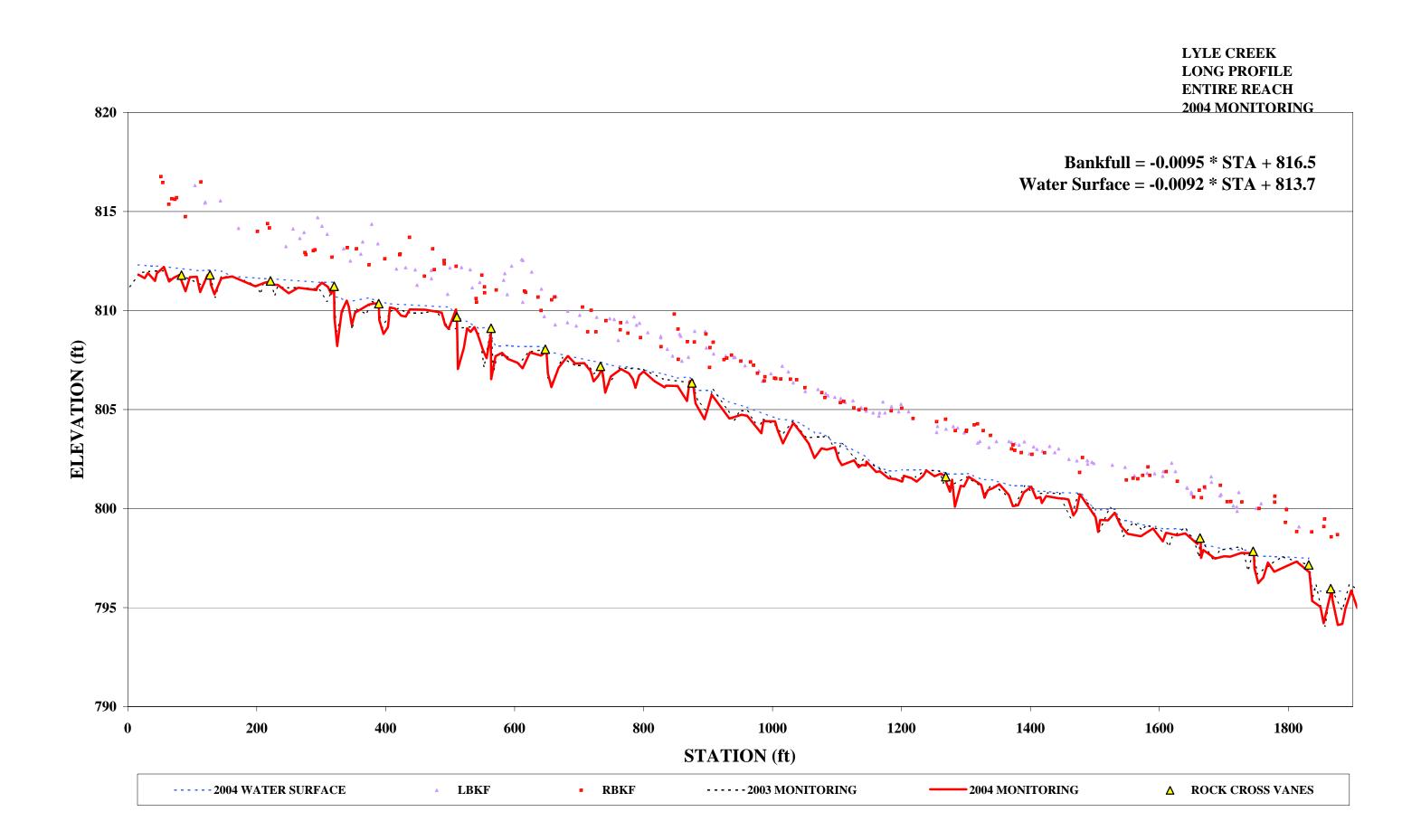
Riffle 2003 2004 0.45 0.08 1.01 0.40

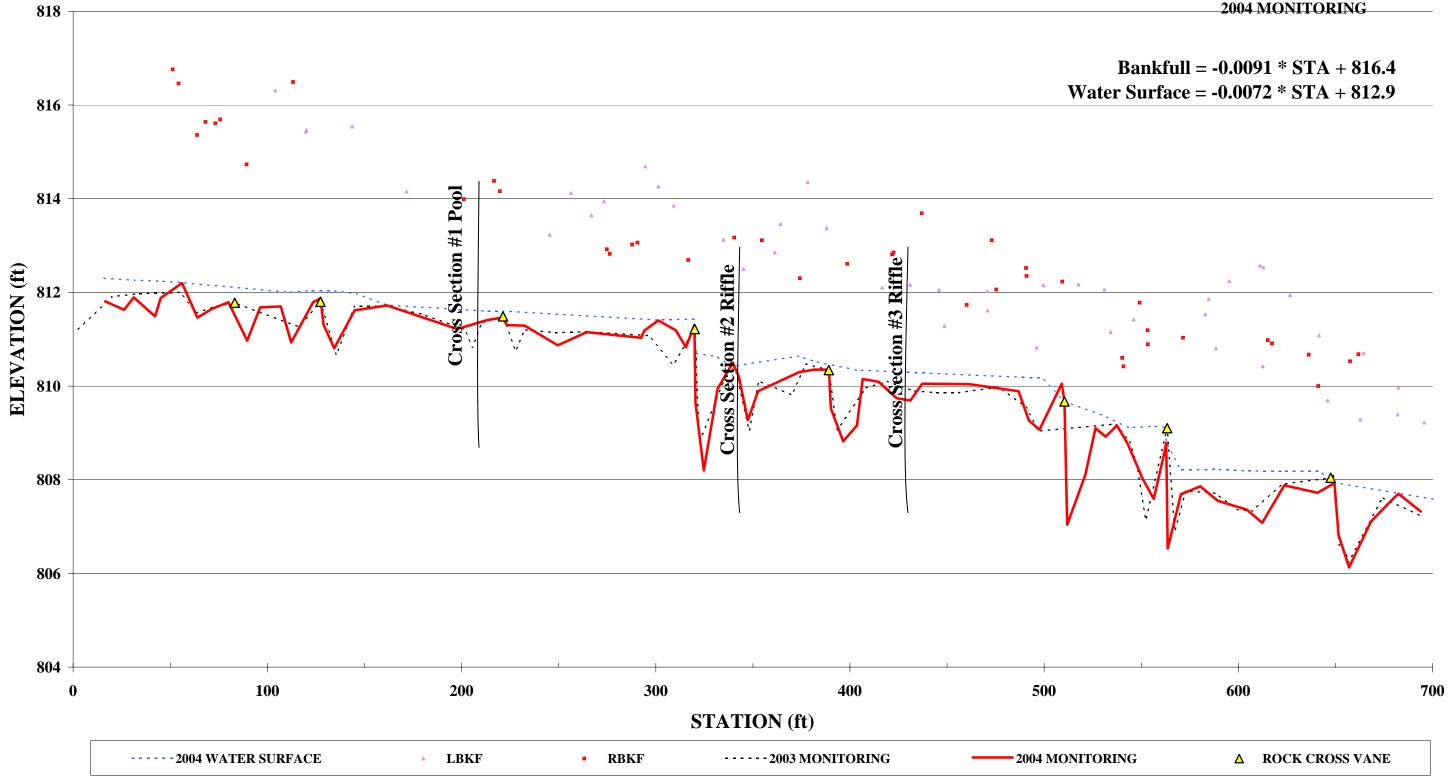
Riffle 2003 2004 0.29 0.07 13.33 0.31

As-built 0.19 15.91

0.29

D50 As-built D85 0.52


8


DSO	60.0	0.29	0.33	0.19	0.29	0.07	0.19	0.45	0.08	0.19	0.11	0.33	0.19	0.33
D85	0.52	0.76	0.66	15.91	13.33	0.31	15.91	1.01	0.40	15.91	3.11	79.40	15 91	17 52
		Quad 1			Quad 2			Ouad 3			Ouad 4			
VEGETATION		Lyle Creek			Lyle Creek			Lyle Creek			Lvie Creek			
	2004	2003	Planted	2004	2003	Planted	2004	2003	Planted	2004	2003	Planted		
Tree Stratum (trees/acre)	720	720	0	520	520	40	600	600	240	12560	12560	c		
Shrub Stratum (% cover)	1.0	1.0		1.0	1.0		8.5	8.5		15.5	15.5			
Herb Stratum (%cover)	62.5	62.5	1	184	184		171.5	171.5	-	152.2	152.2			
BEHL/NBS	Lyle	Lyle Creek	Lyle (Lyle Creek										
Average conditions	BEHI-03	NBS-03	BEHI-04 NBS-04	NBS-04										

 Lyie Creek
 Lyie Creek

 BEHI-03
 NBS-03
 BEHI-04
 NBS-04

 LOW
 MOD
 MOD
 MOD

LYLE CREEK LONG PROFILE STABILIZATION REACH 2004 MONITORING

LYLE CREEK LONG PROFILE **RESTORATION REACH** 2004 MONITORING

2.4 Areas of Concern

The following areas of concern should be monitored closely and considered for repair as suggested:

- Easement Limits
 - NCEEP should work with landowners to ensure easement limits are maintained and that cattle stay out of the riparian area.
- Areas of major head cuts
 - There are two areas of major head cut totaling approximately 325 ft.
 - The first area has a maximum head cut of six inches and is approximately 200 ft in length. This head cut is located from station 10+25 to 12+25. There is still 175 ft upstream until the next structure controlling grade.
 - The second area has a maximum head cut of six inches and is approximately 125 ft in length. This head cut is located from station 15+25 to 16+50. There is still 350 ft upstream until the next structure controlling grade.
- Areas with bank erosion and slumping
 - The following meander bends have a high near NBS and very high BEHI rating for at least a 10 ft section on the outside of the meander bend.
 - @ STATIONS 9+50; 11+10; 11+50; 11+75; 12+90; 13+80; 16+20; 16+60; 16+80; 18+00; 18+50
 - All of these problem areas were located in the reach that was restored. The stabilized reach had some bank erosion but nothing that classified as high near NBS and very high BEHI.
 - These areas should be regarded and planted heavily with live stakes to help establish root mass along the channel bank. Root wads should also be considered for bank protection.
 - These areas should be monitored closely during upcoming site visits to determine if the problem is localized or regional in scale. The problems seem to be regional.
 - Overland flow is also causing bank erosion and may need to be routed away from areas that show signs of severe bank erosion.
- Areas lacking stream feature
 - There are twelve riffles that were constructed that do not exist in the longitudinal profile measured during the 2004 monitoring
 - There are four riffles that were monitored in 2003 that do not exist in the longitudinal profile measured during the 2004 monitoring
 - Some of the riffles that have been removed as a result of the major head cuts in the two sections listed above
 - The remainder of the failed riffles have transitioned into runs or glides
 - Most riffles that were constructed within 100 ft downstream of a cross vane with a drop greater than 0.5 ft were not observed during the 2004 monitoring survey
- Areas lacking stream pattern
 - There are two areas that have shown a significant change in stream pattern from the as-built conditions.

- The first section is from station 12+25 to 13+25 there is half of a meander wavelength that has been straightened into a long run this is the result of the head cut mentioned above.
- The second section is from station 17+50 to 18+50 there an entire meander wavelength that has been straightened into a run followed by a long step pool feature at the end of the project.
- The exact change in plan form could not be quantified with the 2003-2004 monitoring periods. The supplied as-built data for this project is not the same planform that was observed during the 2003-2004 monitoring periods.
- NCSU-BAE had reason to not include any of the as-built planform survey in the main body of this report. An extra plan sheet is located in the Appendix that displays the variation of planform from the As-built survey and the 2003 & 2004 monitoring periods.
- Vegetation Concerns
 - Natural regeneration appears to be dominant and should continue to be monitored for growth habitats.
 - Planting more trees if required for mitigation. At this time, the tree stems per acre count is 70 but there is good natural regeneration of trees.
 - It is recommended to stake in areas where excess erosion is occurring on the outside of meander bends
 - The invasive vegetation requires does treatment as soon as possible.
- Biological/Ecological Concerns
 - Biological data have been collected from this project twice following construction. Data from the 2003 investigation clearly note a decline in the biological condition of this stream. Taxa richness EPT and total and EPT abundance values were reduced from preconstruction conditions and both the Dominants in Common value and the number of keystone taxa were also reduced during this investigation. Some recovery was noted during the 2004 survey, but are still marginally worse than those conditions recorded from this stream prior to construction.

Photo Point 1 Downstream 2003 Station 00+00

Photo Point 1 Downstream 2004 Station 00+00

Photo Point 1 J-Hook 2003 Station 00+00

Photo Point 1 J-Hook 2004 Station 00+00

Photo Point 2 Downstream 2003 Station 01+60

Photo Point 2 Downstream 2004 Station 01+60

Photo Point 2 Upstream 2003 Station 01+60

Photo Point 2 Upstream 2004 Station 01+60

Photo Point 3 Downstream 2003 Station 03+60

Photo Point 3 Downstream 2004 Station 03+60

Photo Point 3 Upstream 2003 Station 03+60

Photo Point 3 Upstream 2004 Station 03+60

Photo Point 4 Downstream 2003 Station 05+00

Photo Point 4 Downstream 2004 Station 05+00

Photo Point 4 Upstream 2003 Station 05+00

Photo Point 4 Upstream 2004 Station 05+00

Photo Point 5 Downstream 2003 Station 05+70

Photo Point 5 Downstream 2004 Station 05+70

Photo Point 5 Upstream 2003 Station 05+70

Photo Point 5 Upstream 2004 Station 05+70

Photo Point 6 Downstream 2003 Station 07+40

Photo Point 6 Downstream 2004 Station 07+40

Photo Point 6 Upstream 2003 Station 07+40

Photo Point 6 Upstream 2004 Station 07+40

Photo Point 7 Downstream 2003 Station 09+10

Photo Point 7 Downstream 2004 Station 09+10

Photo Point 7 Upstream 2003 Station 09+10

Photo Point 7 Upstream 2004 Station 09+10

Photo Point 8 Downstream 2003 Station 12+40

Photo Point 8 Downstream 2004 Station 12+40

Photo Point 8 Upstream 2003 Station 12+40

Photo Point 8 Upstream 2004 Station 12+40

Photo Point 9 Downstream 2003 Station 13+25

Photo Point 9 Downstream 2004 Station 13+25

Photo Point 9 Upstream 2003 Station 13+25

Photo Point 9 Upstream 2004 Station 13+25

Photo Point 10 Downstream 2003 Station 14+90

Photo Point 10 Downstream 2004 Station 14+90

Photo Point 11 Downstream 2003 Station 17+25

Photo Point 11 Downstream 2004 Station 17+25

Photo Point 11 Upstream 2003 Station 17+25

Photo Point 11 Upstream 2004 Station 17+25

Photo Point 12 Downstream 2003 Station 18+20

Photo Point 12 Downstream 2004 Station 18+20

Photo Point 12 Upstream 2003 Station 18+20

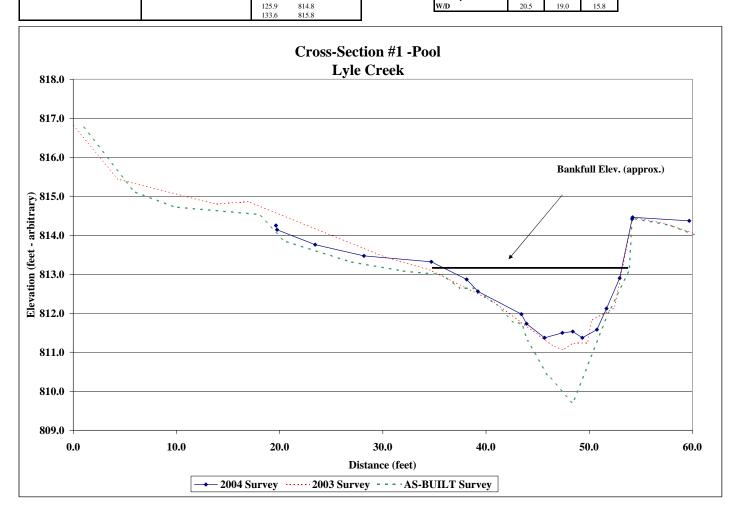
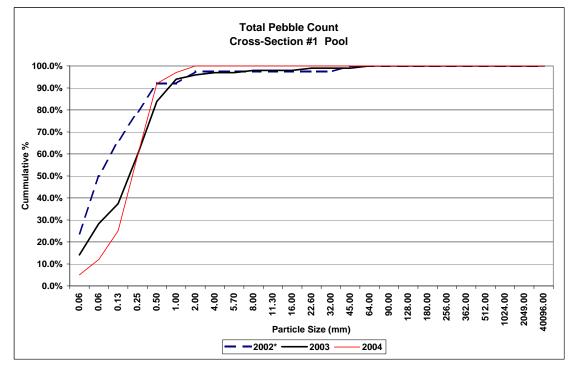


Photo Point 12 Upstream 2004 Station 18+20

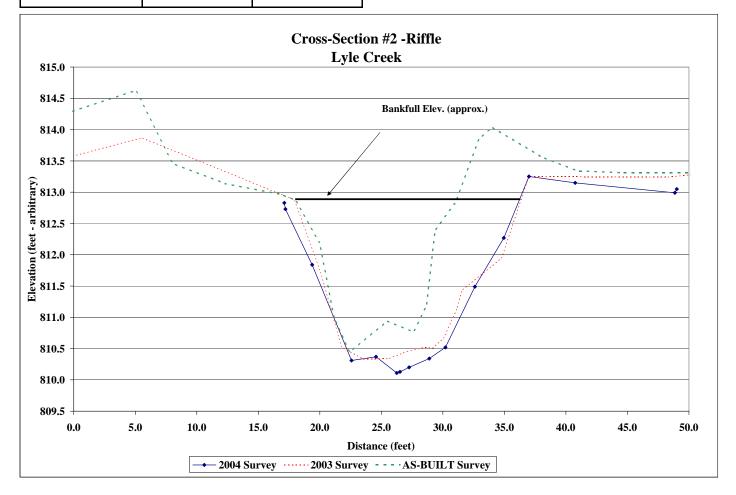
Project Name Cross Section Feature Date Crew		L	T					
	2004			2003			AS-BUILT	
20 Station	004 Survey Elevation	N-4	Station	2003 Survey Elevation		AS Station	-BUILT Su Elevation	
	814.3	LP		816.8	Notes			notes
19.6		LP	0.0			1.0	816.8	
19.8 23.4	814.1 813.8		4.3 13.8	815.4 814.8		5.9 9.8	815.1 814.7	
23.4 28.2	813.8 813.5		13.8	814.8 814.9		9.8 18.0	814.7 814.5	
28.2 34.7	813.3	BKF	30.1	814.9		20.5	814.5	
34.7	813.5	DKL	34.7	813.5	BKF	20.5	813.9	BKF
39.2	812.9		40.8	812.3	DKI	32.0	813.3	DKF
43.4	812.0		40.8	811.8		35.8	813.0	
43.4	812.0		45.0	811.5		37.4	813.0	
45.7	811.4		46.5	811.2		38.8	812.6	
47.4	811.5		47.5	811.1		41.0	812.2	
48.4	811.5		48.3	811.2		42.6	811.8	
49.3	811.4		49.8	811.3		43.5	811.7	
50.7	811.6		50.2	811.8		44.0	811.3	
51.7	812.1		52.4	812.1		45.9	810.4	
52.9	812.9		54.2	814.5	RP	48.4	809.7	
54.2	814.4		57.4	814.3		52.0	812.1	
54.2	814.5	RP	66.4	813.5		53.9	813.1	
59.7	814.4		72.0	813.0		54.2	814.4	RP
			80.8	812.9		58.0	814.2	
			91.1	813.0		60.7	814.0	
						75.8	813.8	
						85.9	814.2	
						98.8	814.6	
						102.9	813.7	
						109.8	811.3	
						118.0	811.8	
			1			125.9	814.8	


	2004	2003	AS-BUILT
Area	18.4	20.1	31.1
Width	19.5	19.5	22.2
Mean Depth	0.9	1.0	1.4
Max Depth	1.9	2.2	3.6
W/D	20.5	19.0	15.8

Project Name	Lyle Creek
Cross Section	#1
Feature	Pool
Date	11/4/03
Crew	Shaffer, Bidelspach, Clinton

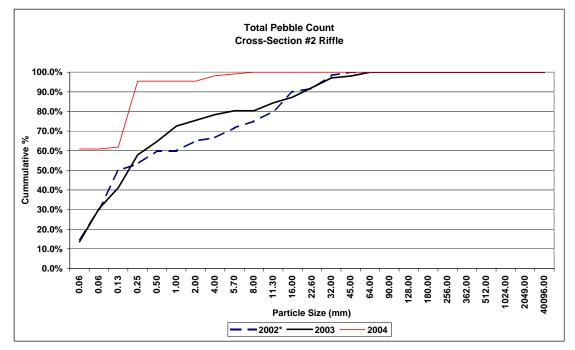
		2002*			2003				
Description	Material	Size (mm)	Pool	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	9	23.7%	23.7%	0	14	14.1%	14.1%
	very fine sand	0.062	10	26.3%	50.0%	0	14	14.1%	28.3%
	fine sand	0.125	6	15.8%	65.8%	0	9	9.1%	37.4%
Sand	medium sand	0.25	5	13.2%	78.9%	8	14	22.2%	59.6%
	course sand	0.50	5	13.2%	92.1%	15	9	24.2%	83.8%
	very course sand	1.0	0	0.0%	92.1%	9	1	10.1%	93.9%
	very fine gravel	2.0	2	5.3%	97.4%	1	1	2.0%	96.0%
G	fine gravel	4.0	0	0.0%	97.4%	1	0	1.0%	97.0%
r	fine gravel	5.7	0	0.0%	97.4%	0	0	0.0%	97.0%
a	medium gravel	8.0	0	0.0%	97.4%	0	1	1.0%	98.0%
a V	medium gravel	11.3	0	0.0%	97.4%	0	0	0.0%	98.0%
	course gravel	16.0	0	0.0%	97.4%	0	0	0.0%	98.0%
e	course gravel	22.6	0	0.0%	97.4%	0	1	1.0%	99.0%
1	very course gravel	32	0	0.0%	97.4%	0	0	0.0%	99.0%
	very course gravel	45	1	2.6%	100.0%	0	0	0.0%	99.0%
	small cobble	64	0	0.0%	100.0%	0	1	1.0%	100.0%
Cobble	medium cobble	90	0	0.0%	100.0%	0	0	0.0%	100.0%
Conne	large cobble	128	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAL	/ %of whole count		38	100.0%		34	65	100.0%	

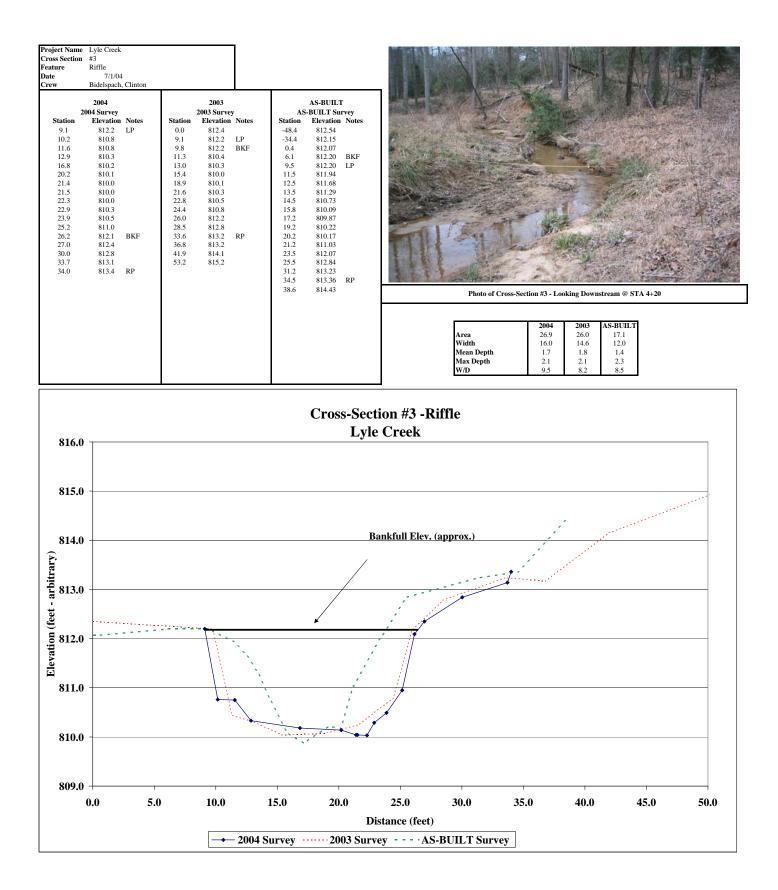
	d16	d35	d50	d85	d95
2002*	0.00	0.08	0.09	0.52	2.33
2003	0.07	0.16	0.29	0.76	2.29
2004	0.12	0.24	0.33	0.66	1.20



Project Name Cross Section Feature Date Crew								
	2004 004 Survey		a	2003 2003 Survey			AS-BUILT BUILT Su	rvey
Station	Elevation		Station	Elevation	Notes	Station	Elevation	Notes
17.1	812.8	LP	0.2	813.6		-28.0	812.6	
17.2	812.7	BKF	5.5	813.9	DUE	-13.1	813.5	
19.4	811.8		17.9	812.9	BKF	5.0	814.6	
22.6	810.3		20.0	811.8		8.1	813.5	
24.6 26.3	810.4 810.1		21.8 23.5	810.5 810.3		12.3 16.9	813.1 813.0	
26.3 26.5	810.1 810.1		23.5	810.3		16.9	813.0	LP
26.5 27.3	810.1 810.2		25.6	810.3		20.0	812.9	LP
27.3 28.9	810.2 810.3		26.8	810.4 810.5		20.0	812.2 811.0	
30.2	810.5		28.3	810.5		21.2	810.4	
32.6	810.5		30.1	810.5		25.5	810.4	
35.0	812.3		31.1	811.1		27.6	810.9	
37.0	813.3		31.6	811.4		28.7	811.2	
40.8	813.2		34.8	812.0		29.4	812.4	
48.9	813.0		37.0	813.3		31.0	812.4	BKF
49.0	813.1	RP	48.3	813.2		32.9	813.8	2
			55.1	813.4		34.0	814.0	
			59.5	813.3		37.9	813.6	
						40.9	813.3	
			1			44.5	813.3	
						59.0	813.3	

Photo of	Cross-Section	#2 -	Looking	Downstream	@	STA	3+40
----------	---------------	------	---------	------------	---	-----	------

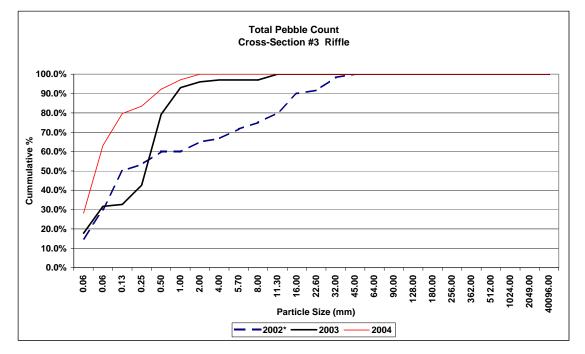

	2004	2003	AS-BUILT
Area	31.5	30.1	17.8
Width	19.8	17.0	11.0
Mean Depth	1.6	1.8	1.6
Max Depth	2.7	2.5	2.4
W/D	12.4	9.6	6.8



Project Name	Lyle Creek
Cross Section	#2
Feature	Riffle
Date	11/4/03
Crew	Shaffer, Bidelspach, Clinton

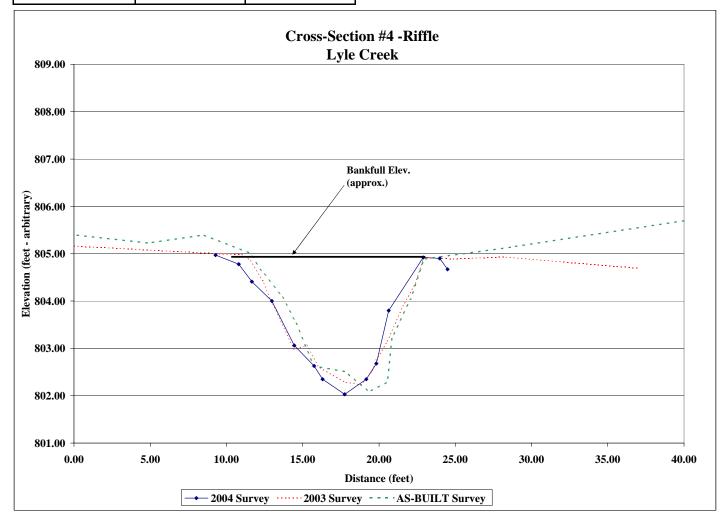
2002*					2003				
Description	Material	Size (mm)	Riffle	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	9	15.0%	15.0%	0	14	13.7%	13.7%
	very fine sand	0.062	9	15.0%	30.0%	0	17	16.7%	30.4%
	fine sand	0.125	12	20.0%	50.0%	4	7	10.8%	41.2%
Sand	medium sand	0.25	2	3.3%	53.3%	11	6	16.7%	57.8%
	course sand	0.50	4	6.7%	60.0%	6	1	6.9%	64.7%
	very course sand	1.0	0	0.0%	60.0%	8	0	7.8%	72.5%
	very fine gravel	2.0	3	5.0%	65.0%	3	0	2.9%	75.5%
G	fine gravel	4.0	1	1.7%	66.7%	3	0	2.9%	78.4%
r	fine gravel	5.7	3	5.0%	71.7%	2	0	2.0%	80.4%
a	medium gravel	8.0	2	3.3%	75.0%	0	0	0.0%	80.4%
a V	medium gravel	11.3	3	5.0%	80.0%	4	0	3.9%	84.3%
e	course gravel	16.0	6	10.0%	90.0%	3	0	2.9%	87.3%
e	course gravel	22.6	1	1.7%	91.7%	5	0	4.9%	92.2%
1	very course gravel	32	4	6.7%	98.3%	5	0	4.9%	97.1%
	very course gravel	45	1	1.7%	100.0%	1	0	1.0%	98.0%
	small cobble	64	0	0.0%	100.0%	2	0	2.0%	100.0%
Cobble	medium cobble	90	0	0.0%	100.0%	0	0	0.0%	100.0%
CODDIC	large cobble	128	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAL	/ %of whole count		60	100.0%		57	45	100.0%	

	d16	d35	d50	d85	d95
2002*	0.06	0.12	0.19	15.91	32.90
2003	0.07	0.13	0.29	13.33	33.80
2004	0.00	0.00	0.00	0.31	0.37

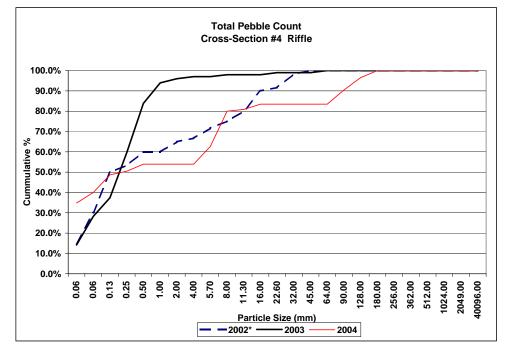


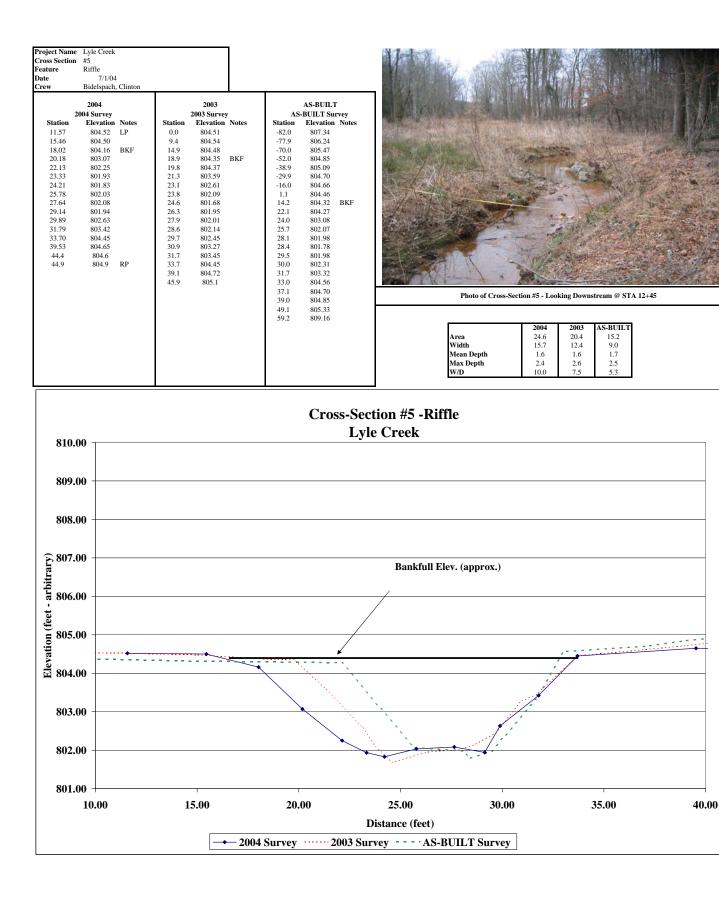
Project Name	Lyle Creek
Cross Section	#3
Feature	Riffle
Date	11/4/03
Crew	Shaffer, Bidelspach, Clinton

			2002*	-	2003					
Description	Material	Size (mm)	Riffle	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %	
Silt/Clay	silt/clay	0.061	9	15.0%	15.0%	0	18	17.8%	17.8%	
	very fine sand	0.062	9	15.0%	30.0%	2	12	13.9%	31.7%	
	fine sand	0.125	12	20.0%	50.0%	0	1	1.0%	32.7%	
Sand	medium sand	0.25	2	3.3%	53.3%	7	3	9.9%	42.6%	
	course sand	0.50	4	6.7%	60.0%	25	12	36.6%	79.2%	
	very course sand	1.0	0	0.0%	60.0%	10	4	13.9%	93.1%	
	very fine gravel	2.0	3	5.0%	65.0%	3	0	3.0%	96.0%	
G	fine gravel	4.0	1	1.7%	66.7%	1	0	1.0%	97.0%	
_	fine gravel	5.7	3	5.0%	71.7%	0	0	0.0%	97.0%	
r	medium gravel	8.0	2	3.3%	75.0%	0	0	0.0%	97.0%	
a	medium gravel	11.3	3	5.0%	80.0%	3	0	3.0%	100.0%	
v	course gravel	16.0	6	10.0%	90.0%	0	0	0.0%	100.0%	
e	course gravel	22.6	1	1.7%	91.7%	0	0	0.0%	100.0%	
1	very course gravel	32	4	6.7%	98.3%	0	0	0.0%	100.0%	
	very course gravel	45	1	1.7%	100.0%	0	0	0.0%	100.0%	
	small cobble	64	0	0.0%	100.0%	0	0	0.0%	100.0%	
Cobble	medium cobble	90	0	0.0%	100.0%	0	0	0.0%	100.0%	
Conne	large cobble	128	0	0.0%	100.0%	0	0	0.0%	100.0%	
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%	
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%	
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%	
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%	
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%	
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%	
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%	
TOTAL	/ %of whole count		60	100.0%		51	50	100.0%		


	d16	d35	d50	d85	d95
2002*	0.06	0.12	0.19	15.91	32.90
2003	0.00	0.23	0.45	1.01	2.47
2004	0.00	0.07	0.08	0.40	1.18

Project Name	Lyle Creek				1			
Cross Section	#4							3.00
Feature	Riffle							Contra and
Date	7/1/04	L .						
Crew	Bidelspach.	, Clinton						at the
								- 47 VS
	2004			2003			AS-BUILT	132 - 1
	004 Survey			2003 Survey			-BUILT Survey	
Station	Elevation		Station	Elevation	Notes	Station	Elevation Not	es
9.28	804.97	LP	0.0	805.16		-90.4	808.12	A 10 10
10.81	804.78		9.6	805.00		-85.6	806.93	
11.67	804.41		11.0	804.98		-80.5	806.16	The second
12.98	804.00		11.5	804.87	BKF	-58.4	805.61	
14.45	803.06		12.4	804.43		-34.6	805.65	125
15.75	802.63		12.9	804.06		-26.5	804.84	
16.30	802.35		14.4	802.97		-9.6	804.84	No. 1
17.75	802.03		15.3	803.07		-2.4	805.48	125
19.17	802.35		16.0	802.62		4.9	805.23	
19.83	802.68		17.7	802.29		8.5	805.40	State of the other
20.63	803.80	DVE	18.8	802.23		11.5	805.01	a later
22.90	804.92	BKF	19.6	802.51		12.4	804.59	
23.98	804.90	DD	19.8	802.75		13.6	804.12	
24.50	804.67	RP	20.5 21.6	803.13 803.92		14.5 15.7	803.57 802.63	22.2
			21.6	803.92 804.35		15.7	802.63	
			22.4	804.33 804.92		17.8	802.08	
			22.9	804.92 804.89		20.6	802.08	
			24.9	804.89 804.93		20.6	802.29	
			28.2	804.93 804.69		20.9	803.23 804.03	
			57.0	004.09		22.1	804.05 804.89 BK	
			1			23.0	804.89 BK 805.14	г
						42.6	805.82	
			1			42.6	805.82 808.21	
						07.0	808.21	

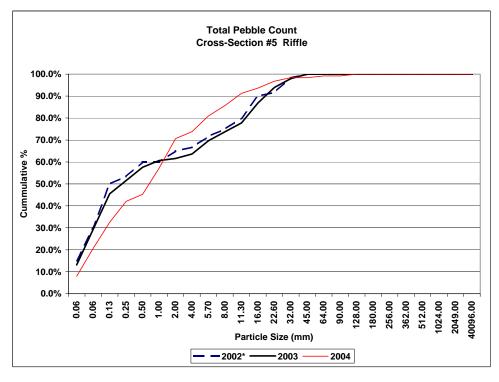

Area	19.0	17.6	16.9
Width	11.2	10.6	10.6
Mean Depth	1.7	1.7	1.6
Max Depth	2.9	2.7	2.8
W/D	6.6	6.3	6.6

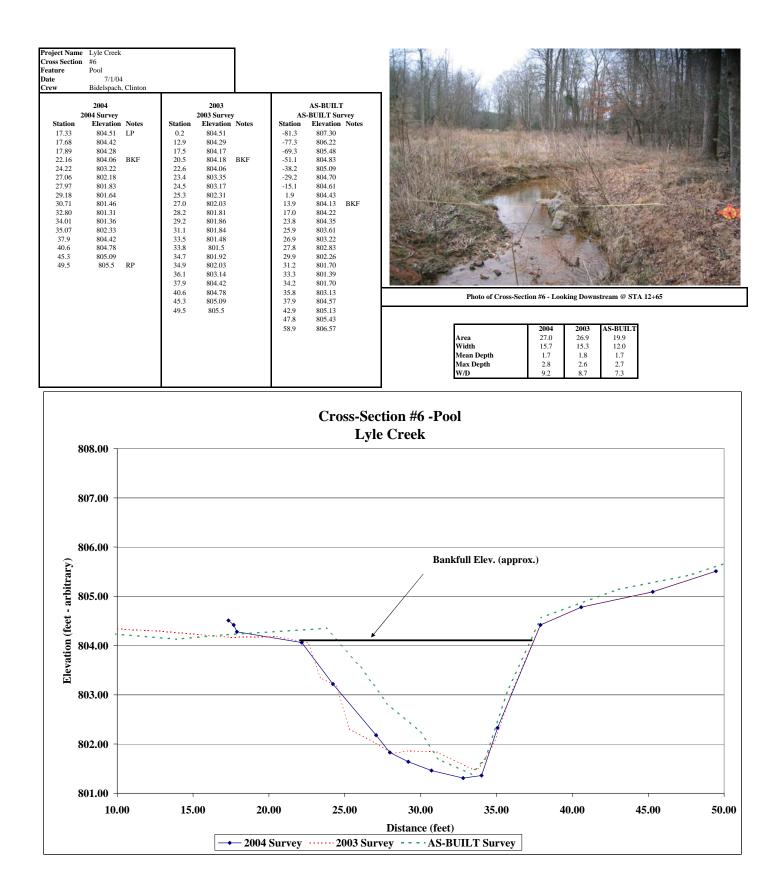


Project Name	Lyle Creek
Cross Section	#4
Feature	Riffle
Date	11/4/03
Crew	Shaffer, Bidelspach, Clinton

			2002*	-		-	003		
Description	Material	Size (mm)	Riffle	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	9	15.0%	15.0%	30	4	36.6%	36.6%
	very fine sand	0.062	9	15.0%	30.0%	10	2	12.9%	49.5%
	fine sand	0.125	12	20.0%	50.0%	2	2	4.3%	53.8%
Sand	medium sand	0.25	2	3.3%	53.3%	2	6	8.6%	62.4%
	course sand	0.50	4	6.7%	60.0%	9	8	18.3%	80.6%
	very course sand	1.0	0	0.0%	60.0%	0	1	1.1%	81.7%
	very fine gravel	2.0	3	5.0%	65.0%	0	2	2.2%	83.9%
G	fine gravel	4.0	1	1.7%	66.7%	0	2	2.2%	86.0%
_	fine gravel	5.7	3	5.0%	71.7%	0	3	3.2%	89.2%
r	medium gravel	8.0	2	3.3%	75.0%	0	1	1.1%	90.3%
a	medium gravel	11.3	3	5.0%	80.0%	0	0	0.0%	90.3%
v	course gravel	16.0	6	10.0%	90.0%	0	0	0.0%	90.3%
e	course gravel	22.6	1	1.7%	91.7%	0	4	4.3%	94.6%
1	very course gravel	32	4	6.7%	98.3%	0	1	1.1%	95.7%
	very course gravel	45	1	1.7%	100.0%	0	2	2.2%	97.8%
	small cobble	64	0	0.0%	100.0%	0	0	0.0%	97.8%
Cobble	medium cobble	90	0	0.0%	100.0%	0	1	1.1%	98.9%
CODDIe	large cobble	128	0	0.0%	100.0%	0	1	1.1%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAL	/ %of whole count		60	100.0%		53	40	100.0%	

	d16	d35	d50	d85	d95
2002*	0.06	0.12	0.19	15.91	32.90
2003	0.00	0.00	0.11	3.11	31.22
2004	0.00	0.06	0.33	79.40	142.75

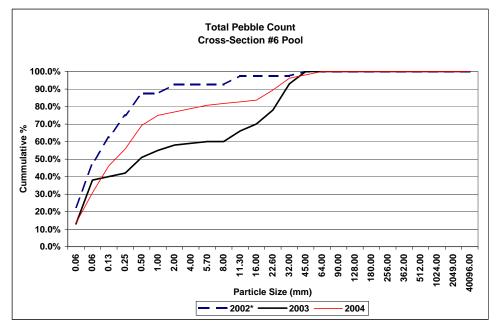


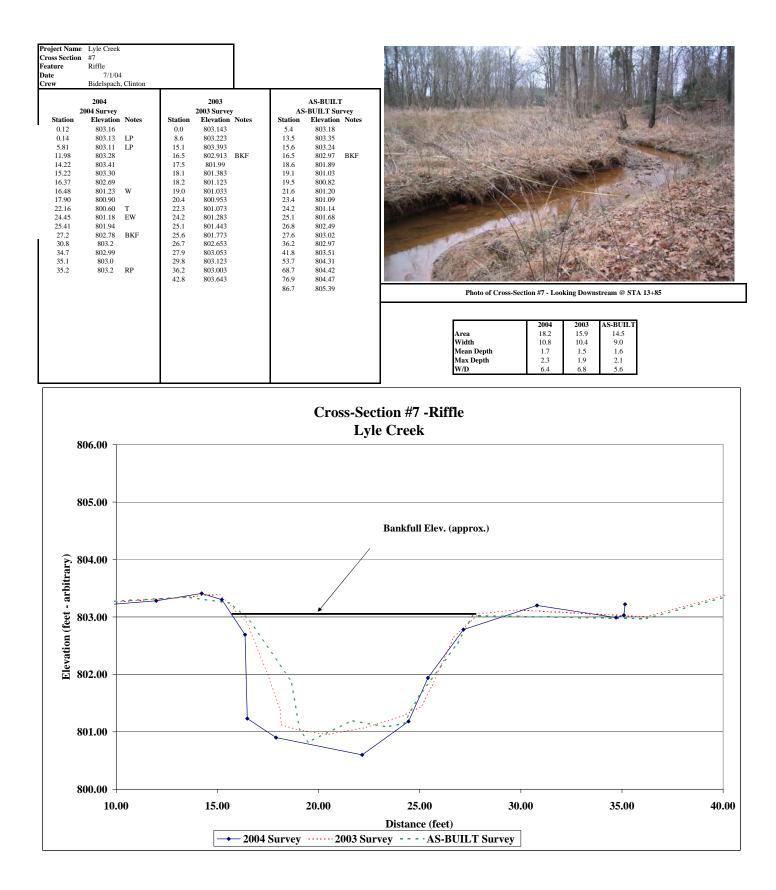


Project Name	Lyle Creek
Cross Section	#5
Feature	Riffle
Date	11/4/03
Crew	Shaffer, Bidelspach, Clinton

			2002*	2002 people	iouni io u typicu		003		
Description	Material	Size (mm)	Riffle	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	9	15.0%	15.0%	12	1	13.1%	13.1%
	very fine sand	0.062	9	15.0%	30.0%	16	0	16.2%	29.3%
	fine sand	0.125	12	20.0%	50.0%	12	4	16.2%	45.5%
Sand	medium sand	0.25	2	3.3%	53.3%	0	6	6.1%	51.5%
	course sand	0.50	4	6.7%	60.0%	0	6	6.1%	57.6%
	very course sand	1.0	0	0.0%	60.0%	0	3	3.0%	60.6%
	very fine gravel	2.0	3	5.0%	65.0%	0	1	1.0%	61.6%
G	fine gravel	4.0	1	1.7%	66.7%	0	2	2.0%	63.6%
	fine gravel	5.7	3	5.0%	71.7%	0	6	6.1%	69.7%
r	medium gravel	8.0	2	3.3%	75.0%	0	4	4.0%	73.7%
a	medium gravel	11.3	3	5.0%	80.0%	0	4	4.0%	77.8%
v	course gravel	16.0	6	10.0%	90.0%	0	9	9.1%	86.9%
e	course gravel	22.6	1	1.7%	91.7%	0	7	7.1%	93.9%
1	very course gravel	32	4	6.7%	98.3%	0	4	4.0%	98.0%
	very course gravel	45	1	1.7%	100.0%	0	2	2.0%	100.0%
	small cobble	64	0	0.0%	100.0%	0	0	0.0%	100.0%
Cobble	medium cobble	90	0	0.0%	100.0%	0	0	0.0%	100.0%
Cobble	large cobble	128	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAL	/ %of whole count		60	100.0%		40	59	100.0%	

	d16	d35	d50	d85	d95
2002*	0.06	0.12	0.19	15.91	32.90
2003	0.07	0.13	0.33	17.52	30.24
2004	0.08	0.24	1.05	8.64	22.70

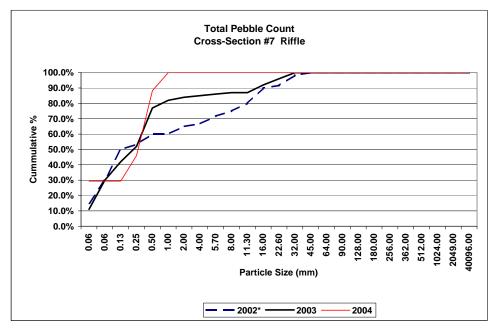




Project Name	Lyle Creek
Cross Section	#6
Feature	Pool
Date	11/4/03
Crew	Shaffer, Bidelspach, Clinton

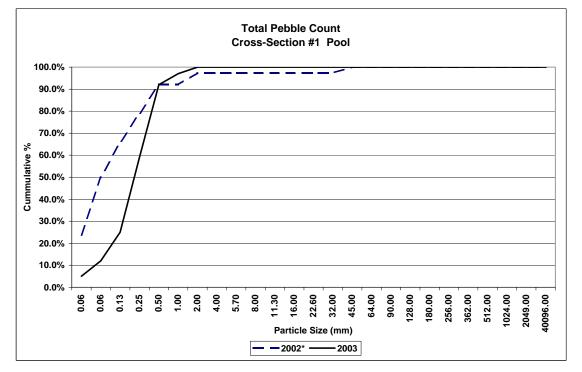
			2002*	2003					
Description	Material	Size (mm)	Pool	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	9	22.5%	22.5%	13	0	13.0%	13.0%
	very fine sand	0.062	10	25.0%	47.5%	24	1	25.0%	38.0%
	fine sand	0.125	6	15.0%	62.5%	2	0	2.0%	40.0%
Sand	medium sand	0.25	5	12.5%	75.0%	1	1	2.0%	42.0%
	course sand	0.50	5	12.5%	87.5%	0	9	9.0%	51.0%
	very course sand	1.0	0	0.0%	87.5%	0	4	4.0%	55.0%
	very fine gravel	2.0	2	5.0%	92.5%	0	3	3.0%	58.0%
G	fine gravel	4.0	0	0.0%	92.5%	0	1	1.0%	59.0%
	fine gravel	5.7	0	0.0%	92.5%	0	1	1.0%	60.0%
r	medium gravel	8.0	0	0.0%	92.5%	0	0	0.0%	60.0%
a	medium gravel	11.3	2	5.0%	97.5%	0	6	6.0%	66.0%
v	course gravel	16.0	0	0.0%	97.5%	0	4	4.0%	70.0%
e	course gravel	22.6	0	0.0%	97.5%	0	8	8.0%	78.0%
1	very course gravel	32	0	0.0%	97.5%	0	15	15.0%	93.0%
	very course gravel	45	1	2.5%	100.0%	0	7	7.0%	100.0%
	small cobble	64	0	0.0%	100.0%	0	0	0.0%	100.0%
Cobble	medium cobble	90	0	0.0%	100.0%	0	0	0.0%	100.0%
Cobble	large cobble	128	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAL	/ %of whole count		40	100.0%		40	60	100.0%	

	d16	d35	d50	d85	d95
2002*	0.00	0.08	0.11	0.65	11.65
2003	0.07	0.09	0.71	31.78	43.07
2004	0.07	0.12	0.26	19.78	36.58



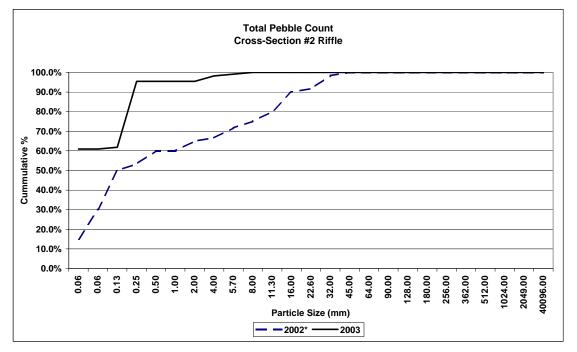
Project Name	Lyle Creek
Cross Section	#7
Feature	Riffle
Date	11/4/03
Crew	Shaffer, Bidelspach, Clinton

			2002*	1	51		003		
Description	Material	Size (mm)	Riffle	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	9	15.0%	15.0%	0	11	11.0%	11.0%
	very fine sand	0.062	9	15.0%	30.0%	3	16	19.0%	30.0%
	fine sand	0.125	12	20.0%	50.0%	6	6	12.0%	42.0%
Sand	medium sand	0.25	2	3.3%	53.3%	10	0	10.0%	52.0%
	course sand	0.50	4	6.7%	60.0%	25	0	25.0%	77.0%
	very course sand	1.0	0	0.0%	60.0%	5	0	5.0%	82.0%
	very fine gravel	2.0	3	5.0%	65.0%	2	0	2.0%	84.0%
G	fine gravel	4.0	1	1.7%	66.7%	1	0	1.0%	85.0%
	fine gravel	5.7	3	5.0%	71.7%	1	0	1.0%	86.0%
r	medium gravel	8.0	2	3.3%	75.0%	1	0	1.0%	87.0%
a	medium gravel	11.3	3	5.0%	80.0%	0	0	0.0%	87.0%
v	course gravel	16.0	6	10.0%	90.0%	5	0	5.0%	92.0%
e	course gravel	22.6	1	1.7%	91.7%	4	0	4.0%	96.0%
1	very course gravel	32	4	6.7%	98.3%	4	0	4.0%	100.0%
	very course gravel	45	1	1.7%	100.0%	0	0	0.0%	100.0%
	small cobble	64	0	0.0%	100.0%	0	0	0.0%	100.0%
Cobble	medium cobble	90	0	0.0%	100.0%	0	0	0.0%	100.0%
Cobble	large cobble	128	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAL	/ %of whole count		60	100.0%		67	33	100.0%	


	d16	d35	d50	d85	d95
2002*	0.06	0.12	0.19	15.91	32.90
2003	0.07	0.13	0.34	3.00	25.30
2004	0.00	0.25	0.41	0.71	1.18

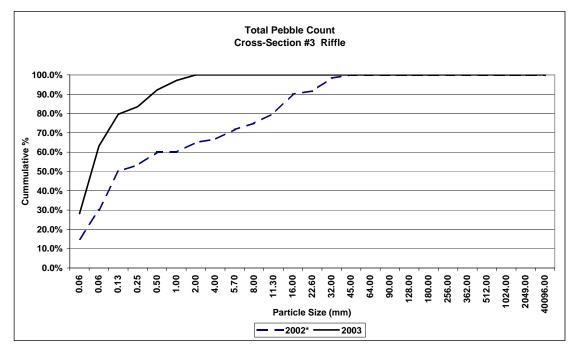
Project Name	Lyle Creek
Cross Section	#1
Feature	Pool
Date	11/4/03
Crew	Shaffer, Bidelspach, Clinton

			2002*			2	003		
Description	Material	Size (mm)	Pool	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	9	23.7%	23.7%	1	4	5.0%	5.0%
	very fine sand	0.062	10	26.3%	50.0%	2	5	7.0%	12.0%
	fine sand	0.125	6	15.8%	65.8%	6	7	13.0%	25.0%
Sand	medium sand	0.25	5	13.2%	78.9%	17	17	34.0%	59.0%
	course sand	0.50	5	13.2%	92.1%	13	20	33.0%	92.0%
	very course sand	1.0	0	0.0%	92.1%	1	4	5.0%	97.0%
	very fine gravel	2.0	2	5.3%	97.4%		3	3.0%	100.0%
G	fine gravel	4.0	0	0.0%	97.4%			0.0%	100.0%
r	fine gravel	5.7	0	0.0%	97.4%			0.0%	100.0%
a	medium gravel	8.0	0	0.0%	97.4%			0.0%	100.0%
a v	medium gravel	11.3	0	0.0%	97.4%			0.0%	100.0%
e	course gravel	16.0	0	0.0%	97.4%			0.0%	100.0%
e 1	course gravel	22.6	0	0.0%	97.4%			0.0%	100.0%
1	very course gravel	32	0	0.0%	97.4%			0.0%	100.0%
	very course gravel	45	1	2.6%	100.0%	0	0	0.0%	100.0%
	small cobble	64	0	0.0%	100.0%	0	0	0.0%	100.0%
Cobble	medium cobble	90	0	0.0%	100.0%	0	0	0.0%	100.0%
Condie	large cobble	128	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAL	/ %of whole count		38	100.0%		40	60	100.0%	


	d16	d35	d50	d85	d95
2002*	0.00	0.08	0.09	0.52	2.33
2003	0.12	0.24	0.33	0.66	1.20

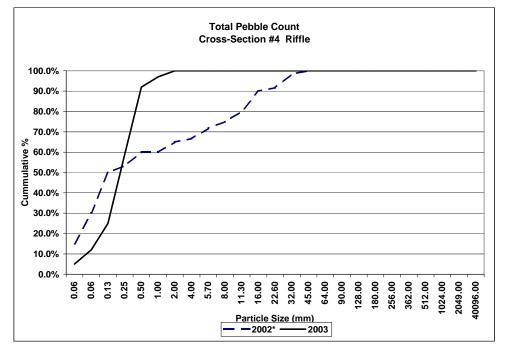
Project Name	Lyle Creek
Cross Section	#2
Feature	Riffle
Date	11/4/03
Crew	Shaffer, Bidelspach, Clinton

			2002*			2	003		
Description	Material	Size (mm)	Riffle	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	9	15.0%	15.0%	30	37	60.9%	60.9%
	very fine sand	0.062	9	15.0%	30.0%	0	0	0.0%	60.9%
	fine sand	0.125	12	20.0%	50.0%	1	0	0.9%	61.8%
Sand	medium sand	0.25	2	3.3%	53.3%	19	18	33.6%	95.5%
	course sand	0.50	4	6.7%	60.0%	0	0	0.0%	95.5%
	very course sand	1.0	0	0.0%	60.0%	0	0	0.0%	95.5%
	very fine gravel	2.0	3	5.0%	65.0%	0	0	0.0%	95.5%
G	fine gravel	4.0	1	1.7%	66.7%	0	3	2.7%	98.2%
_	fine gravel	5.7	3	5.0%	71.7%	0	1	0.9%	99.1%
r	medium gravel	8.0	2	3.3%	75.0%	0	1	0.9%	100.0%
a	medium gravel	11.3	3	5.0%	80.0%	0	0	0.0%	100.0%
v	course gravel	16.0	6	10.0%	90.0%			0.0%	100.0%
e	course gravel	22.6	1	1.7%	91.7%			0.0%	100.0%
1	very course gravel	32	4	6.7%	98.3%			0.0%	100.0%
	very course gravel	45	1	1.7%	100.0%			0.0%	100.0%
	small cobble	64	0	0.0%	100.0%			0.0%	100.0%
Cobble	medium cobble	90	0	0.0%	100.0%			0.0%	100.0%
Condie	large cobble	128	0	0.0%	100.0%			0.0%	100.0%
	very large cobble	180	0	0.0%	100.0%			0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAL	/ %of whole count		60	100.0%		50	60	100.0%	


	d16	d35	d50	d85	d95
2002*	0.06	0.12	0.19	15.91	32.90
2003	0.00	0.00	0.00	0.31	0.37

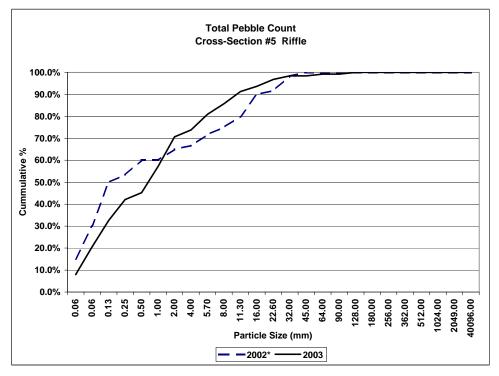
Project Name	Lyle Creek
Cross Section	#3
Feature	Riffle
Date	11/4/03
Crew	Shaffer, Bidelspach, Clinton

			2002*			20	003		
Description	Material	Size (mm)	Riffle	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	9	15.0%	15.0%	26	3	28.2%	28.2%
	very fine sand	0.062	9	15.0%	30.0%	32	4	35.0%	63.1%
	fine sand	0.125	12	20.0%	50.0%	15	2	16.5%	79.6%
Sand	medium sand	0.25	2	3.3%	53.3%		4	3.9%	83.5%
	course sand	0.50	4	6.7%	60.0%		9	8.7%	92.2%
	very course sand	1.0	0	0.0%	60.0%		5	4.9%	97.1%
	very fine gravel	2.0	3	5.0%	65.0%		3	2.9%	100.0%
G	fine gravel	4.0	1	1.7%	66.7%			0.0%	100.0%
r	fine gravel	5.7	3	5.0%	71.7%			0.0%	100.0%
	medium gravel	8.0	2	3.3%	75.0%			0.0%	100.0%
a v	medium gravel	11.3	3	5.0%	80.0%			0.0%	100.0%
	course gravel	16.0	6	10.0%	90.0%			0.0%	100.0%
e	course gravel	22.6	1	1.7%	91.7%			0.0%	100.0%
1	very course gravel	32	4	6.7%	98.3%			0.0%	100.0%
	very course gravel	45	1	1.7%	100.0%	0	0	0.0%	100.0%
	small cobble	64	0	0.0%	100.0%	0	0	0.0%	100.0%
Cobble	medium cobble	90	0	0.0%	100.0%	0	0	0.0%	100.0%
Conne	large cobble	128	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAL	/ %of whole count		60	100.0%		73	30	100.0%	


	d16	d35	d50	d85	d95
2002*	0.06	0.12	0.19	15.91	32.90
2003	0.00	0.07	0.08	0.40	1.18

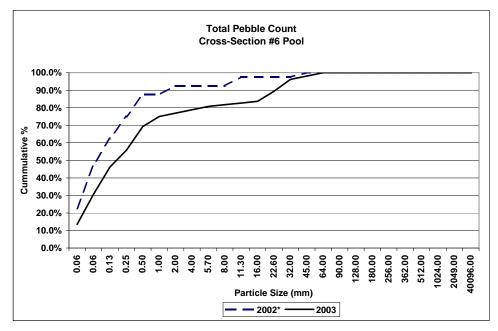
Project Name	Lyle Creek
Cross Section	#4
Feature	Riffle
Date Crew	11/4/03
Crew	Shaffer, Bidelspach, Clinton

			2002*			2	003		
Description	Material	Size (mm)	Riffle	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	9	15.0%	15.0%	30	10	34.8%	34.8%
	very fine sand	0.062	9	15.0%	30.0%	4	2	5.2%	40.0%
	fine sand	0.125	12	20.0%	50.0%	10	0	8.7%	48.7%
Sand	medium sand	0.25	2	3.3%	53.3%	2	0	1.7%	50.4%
	course sand	0.50	4	6.7%	60.0%	2	2	3.5%	53.9%
	very course sand	1.0	0	0.0%	60.0%	0	0	0.0%	53.9%
	very fine gravel	2.0	3	5.0%	65.0%	0	0	0.0%	53.9%
G	fine gravel	4.0	1	1.7%	66.7%	0	0	0.0%	53.9%
-	fine gravel	5.7	3	5.0%	71.7%	10	0	8.7%	62.6%
r	medium gravel	8.0	2	3.3%	75.0%	10	10	17.4%	80.0%
a	medium gravel	11.3	3	5.0%	80.0%	1	0	0.9%	80.9%
v	course gravel	16.0	6	10.0%	90.0%	3	0	2.6%	83.5%
e	course gravel	22.6	1	1.7%	91.7%	0	0	0.0%	83.5%
1	very course gravel	32	4	6.7%	98.3%	0	0	0.0%	83.5%
	very course gravel	45	1	1.7%	100.0%	0	0	34.8% 5.2% 8.7% 1.7% 3.5% 0.0% 0.0% 8.7% 17.4% 0.9% 2.6% 0.0%	83.5%
	small cobble	64	0	0.0%	100.0%	0	0	0.0%	83.5%
Cobble	medium cobble	90	0	0.0%	100.0%	4	4	3.5% 0.0% 0.0% 0.0% 8.7% 17.4% 0.9% 2.6% 0.0%	90.4%
Cobble	large cobble	128	0	0.0%	100.0%	1	6	6.1%	96.5%
	very large cobble	180	0	0.0%	100.0%	0	4	3.5%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAL	/ %of whole count		60	100.0%		77	38	100.0%	


	d16	d35	d50	d85	d95
2002*	0.06	0.12	0.19	15.91	32.90
2003	0.00	0.06	0.33	79.40	142.75

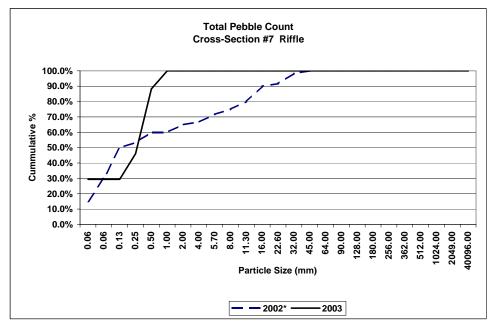
Project Name	Lyle Creek
Cross Section	#5
Feature	Riffle
Date	11/4/03
Crew	Shaffer, Bidelspach, Clinton

			2002*	F		20 20	003		
Description	Material	Size (mm)	Riffle	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	9	15.0%	15.0%	6	4	7.9%	7.9%
	very fine sand	0.062	9	15.0%	30.0%	14	2	12.7%	20.6%
	fine sand	0.125	12	20.0%	50.0%	9	6	11.9%	32.5%
Sand	medium sand	0.25	2	3.3%	53.3%	0	12	9.5%	42.1%
	course sand	0.50	4	6.7%	60.0%	0	4	3.2%	45.2%
	very course sand	1.0	0	0.0%	60.0%	0	15	11.9%	57.1%
	very fine gravel	2.0	3	5.0%	65.0%	0	17	13.5%	70.6%
G	fine gravel	4.0	1	1.7%	66.7%	0	4	3.2%	73.8%
r	fine gravel	5.7	3	5.0%	71.7%	0	9	7.1%	81.0%
a	medium gravel	8.0	2	3.3%	75.0%	0	6	4.8%	85.7%
a V	medium gravel	11.3	3	5.0%	80.0%	0	7	5.6%	91.3%
	course gravel	16.0	6	10.0%	90.0%	0	3	2.4%	93.7%
e	course gravel	22.6	1	1.7%	91.7%	0	4	3.2%	96.8%
1	very course gravel	32	4	6.7%	98.3%	0	2	1.6%	98.4%
	very course gravel	45	1	1.7%	100.0%	0	0	7.9% 12.7% 11.9% 9.5% 3.2% 11.9% 13.5% 3.2% 7.1% 4.8% 5.6% 2.4% 3.2%	98.4%
	small cobble	64	0	0.0%	100.0%	0	1	0.8%	99.2%
Cobble	medium cobble	90	0	0.0%	100.0%	0	0	0.0%	99.2%
Conne	large cobble	128	0	0.0%	100.0%	0	1	0.8%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAI	2 / %of whole count		60	100.0%		29	97	100.0%	


	d16	d35	d50	d85	d95
2002*	0.06	0.12	0.19	15.91	32.90
2003	0.08	0.24	1.05	8.64	22.70

Project Name	Lyle Creek
Cross Section	#6
Feature	Pool
Date	11/4/03
Crew	Shaffer, Bidelspach, Clinton

			2002*	-		2	003		
Description	Material	Size (mm)	Pool	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	9	22.5%	22.5%	6	8	13.5%	13.5%
	very fine sand	0.062	10	25.0%	47.5%	5	13	17.3%	30.8%
	fine sand	0.125	6	15.0%	62.5%	5	11	15.4%	46.2%
Sand	medium sand	0.25	5	12.5%	75.0%	1	9	9.6%	55.8%
	course sand	0.50	5	12.5%	87.5%	3	11	13.5%	69.2%
	very course sand	1.0	0	0.0%	87.5%	0	6	5.8%	75.0%
	very fine gravel	2.0	2	5.0%	92.5%	0	2	1.9%	76.9%
G	fine gravel	4.0	0	0.0%	92.5%	0	2	1.9%	78.8%
r	fine gravel	5.7	0	0.0%	92.5%	0	2	1.9%	80.8%
a	medium gravel	8.0	0	0.0%	92.5%	0	1	1.0%	81.7%
a V	medium gravel	11.3	2	5.0%	97.5%	0	1	1.0%	82.7%
e	course gravel	16.0	0	0.0%	97.5%	0	1	1.0%	83.7%
e 1	course gravel	22.6	0	0.0%	97.5%	0	6	5.8%	89.4%
1	very course gravel	32	0	0.0%	97.5%	0	7	6.7%	96.2%
	very course gravel	45	1	2.5%	100.0%	0	2	1.9%	98.1%
	small cobble	64	0	0.0%	100.0%	0	2	1.9%	100.0%
Cobble	medium cobble	90	0	0.0%	100.0%	0	0	0.0%	100.0%
CODDIe	large cobble	128	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAL	/ %of whole count		40	100.0%		20	84	100.0%	


	d16	d35	d50	d85	d95
2002*	0.00	0.08	0.11	0.65	11.65
2003	0.07	0.12	0.26	19.78	36.58

Project Name	Lyle Creek
Cross Section	#7
Feature	Riffle
Date	11/4/03
Crew	Shaffer, Bidelspach, Clinton

			2002*	P			003		
Description	Material	Size (mm)	Riffle	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	9	15.0%	15.0%	10	20	29.4%	29.4%
	very fine sand	0.062	9	15.0%	30.0%	0	0	0.0%	29.4%
	fine sand	0.125	12	20.0%	50.0%	0	0	0.0%	29.4%
Sand	medium sand	0.25	2	3.3%	53.3%	3	14	16.7%	46.1%
	course sand	0.50	4	6.7%	60.0%	13	30	42.2%	88.2%
	very course sand	1.0	0	0.0%	60.0%	4	8	11.8%	100.0%
	very fine gravel	2.0	3	5.0%	65.0%	0	0	ank % 29.4% 0.0% 0.0% 16.7% 42.2% 10.0%	100.0%
G	fine gravel	4.0	1	1.7%	66.7%	0	0	0.0%	100.0%
	fine gravel	5.7	3	5.0%	71.7%	0	0	0.0%	100.0%
r	medium gravel	8.0	2	3.3%	75.0%	0	0	0.0%	100.0%
a	medium gravel	11.3	3	5.0%	80.0%	0	0	0.0%	100.0%
v	course gravel	16.0	6	10.0%	90.0%	0	0	0.0%	100.0%
e	course gravel	22.6	1	1.7%	91.7%	0	0	0.0%	100.0%
1	very course gravel	32	4	6.7%	98.3%	0	0	0.0%	100.0%
	very course gravel	45	1	1.7%	100.0%	0	0	29.4% 0.0% 0.0% 16.7% 42.2% 11.8% 0.0%	100.0%
	small cobble	64	0	0.0%	100.0%	0	0	0.0%	100.0%
Cobble	medium cobble	90	0	0.0%	100.0%	0	0	0.0%	100.0%
Cobble	large cobble	128	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	29.4% 0.0% 0.0% 16.7% 42.2% 11.8% 0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAL	/ %of whole count		60	100.0%		30	72	100.0%	

	d16	d35	d50	d85	d95
2002*	0.06	0.12	0.19	15.91	32.90
2003	0.00	0.25	0.41	0.71	1.18

Point	Station	E	levation	Description	Point	5	Station	Elevation	Descriptio	n	Point	Station	Elevation	Description	Point	: :	Station	Elevation Description
	30 16.			Thalweg		131	16.02		Water		3168	104.08				3164	51.36	
	27 26. 24 31.			Thalweg Thalweg		125 119	31.78 44.69	812.26 812.24	Water Water		15 3172	119.76 120.11				115 3163	54.29 63.85	
1	21 42.	21	811.49	Thalweg		117	55.86	812.21	Water		21	143.71	815.54	1 LBKF		3162	68.15	815.64 RBKF
	18 45. 16 56.			Thalweg Head of Riffle		17 20	111.71 122.99	812 812.04	Water Water		3173 3175	171.65 245.43				112 3161	73.25 75.73	
1	13 64.	04	811.46	Head of Pool		29	135.31	812.03	Water		3176	256.3	814.12	2 LBKF		3160	89.34	814.73 RBKF
	10 71. 07 79.			Thalweg Thalweg		32 35	146.2 161.32	811.97 811.73			58 3177	266.94 273.3				27 3156	113.28 201.17	
-	6 89.	61	810.97	Thalweg		38	197.17	811.64	Water		67	294.58	814.69	EBKF		3155	216.73	8 814.38 RBKF
	9 96. 13 106.			Thalweg Thalweg		41 44	212.53 221.43		Water Water		3178 71	301.24 309.25				39 60	219.74 274.8	
	16 112.	.28	810.93	Thalweg		70	301.18	811.41	Water		3179	334.91	813.12	2 LBKF		63	276.28	8 812.82 RBKF
	19 123. 22 127.			Thalweg Thalweg		79 82	319.68 320.55	811.43 810.7	Water Water		138 3180	345.21 361.36				3153 66	287.85 290.53	
	25 128.	92	811.31	Head of Pool		137	331.58	810.63	Water		3151	364.28	813.46	B LBKF		80	316.76	812.69 RBKF
	28 134. 31 144.		810.81 811.62	Thalweg Thalweg		140 151	338.97 373.54	810.42 810.64			152 3181	378.27 387.95				3152 141	340.44 354.66	
	34 161.	72	811.72	Head of Riffle		154	381.48	810.53	Water		3182	416.59	812.1	I LBKF		144	374.17	812.3 RBKF
	 37 197. 40 213. 			Thalweg Thalweg		168 187	403.37 498.71	810.34 810.17			155 3183	430.95 445.86				3150 3149	398.54 421.75	
	43 221.	.05	811.46	Rock Vane		192	510.63	809.67	Water		173	448.65	811.28	3 LBKF		158	422.47	812.85 RBKF
	45 223. 49 232			Thalweg Thalweg		203 209	532.24 543.32	809.34 809.11			3184 176	470.77 470.81				196 3148	436.97 460.1	
	52 249.	.55	810.87	Thalweg		215	556.48	809.14	Water		179	496.08	810.82	2 LBKF		193	473.02	813.11 RBKF
	55 264. 61 292.			Thalweg Thalweg		218 220	562.27 562.92	809.12 808.79	Water Water		3185 3186	499.58 517.58				3147 188	475.36 490.66	
	64 294.	.05	811.18	Thalweg		228	570.36	808.21	Water		3187	530.95	812.06	B LBKF		3146	490.93	8 812.35 RBKF
	 69 301. 72 310. 			Thalweg Thalweg		233 235	589.24 605.27	808.22 808.19			216 3188	534.28 545.97				3145 3144	509.3 540.22	
	75 315.	54	810.83	Thalweg		239	623.97		Water		309	582.93	811.53	3 LBKF		213	540.83	8 810.42 RBKF
	78 319 81 320.			Rock Vane Thalweg		241 243	641.9 649.72	808.18 807.94			3193 307	584.66 588.49				210 3143	549.16 553.27	
1	33 324.	76	808.2	Max Pool		261	718.1	807.46	Water		306	595.18	812.24	1 LBKF		226	553.4	810.89 RBKF
	 36 331. 39 339. 			Thalweg Head of Riffle		267 274	735.52 748.23	807.37 807.23			3194 304	611.07 612.58				3142 345	571.52 615.14	
1	42 342.	79	810.2	Thalweg		279	777.3	807.14	Water		305	612.83	812.53	3 LBKF		3141	617.32	810.91 RBKF
	 45 347. 47 352. 			Max Pool Thalweg		291 464	833 852.57	806.78 806.59			303 3195	626.56 641.47				346 3140	636.24 641.09	
1	50 373.	.93	810.3	Thalweg		456	871.33	806.64	Water		302	645.93	809.69	EBKF		349	657.46	810.53 RBKF
	53 381. 56 389.			Thalweg Rock Vane		452 446	875.92 880.31	806.51 805.95			301 3196	662.74 664.39				3139 352	661.81 705.3	
1	59 390.	.14	809.52	Thalweg		437	900.34	805.95	Water		300	681.93	809.39	EBKF		353	713.32	808.92 RBKF
	 63 396. 67 403. 			Max Pool Thalweg		432 435	905.33 931.76	805.92 805.39	Water Water		365 299	682.42 695.65				354 355	718.76 726.18	
	71 406.	.57	810.15	Thalweg		417	960.5	805.11	Water		364	701.03	809.76	B LBKF		356	741.53	8 809.48 RBKF
	69 414. 65 424.			Thalweg Thalweg		403 396	1007.79 1032.33	804.53 804.44			363 362	727.32 747.47				357 3430	763.77 764.47	
	61 431.	.11	809.69	Thalweg		394	1041.74	804.32	Water		3429	754.48	809.55	5 LBKF		3432	775.64	808.85 RBKF
	74 437. 77 461.			Thalweg Thalweg		392 390	1055.93 1065.36	804.05 803.83			296 359	760.71 774.11				3434 3436	795.16 827.03	
1	80 486.	77	809.89	Thalweg		388	1076.35	803.8	Water		295	785.07	809.68	3 LBKF		465	847.56	809.82 RBKF
	83 492. 86 497			Thalweg Thalweg		384 386	1084.24 1096.4	803.64 803.31			360 3433	788.89 793.74				3438 461	853.33 853.83	
1	90 509.	.01	810.05	Rock Vane		382	1103.12	803.3	Water		361	806.41	808.88	3 LBKF		458	867.87	808.42 RBKF
	91 510. 94 511.			Rock Vane Max Pool		380 383	1108.09 1144.14	803.26 802.63			3435 293	826.65 826.67				3440 3442	878.68 896.64	
1	97 521.	18	808.1	Thalweg	1	364	1160.86	802.1	Water		466	836.75	808.04	1 LBKF		444	902.3	807.12 RBKF
	00 526. 02 531.			Thalweg Thalweg		362 358	1166.82 1179.58	802.06 801.91			462 3437	844.9 855.73				442 3444	903.02 907.99	
	05 537.	.47	809.16	Head of Riffle	1	353	1190.94	801.9	Water		453	857.72	808.7	7 LBKF		439	924.79	807.52 RBKF
	08 542. 11 550			Thalweg Thalweg		350 346	1200.81 1203.4	801.95 801.96			457 454	859.47 869.5				3446 3448	928.98 936.46	
	14 556.			Thalweg		337	1223.59	801.95			3439	879.15				3450	950.69	
	17 562. 19 562.			Thalweg Rock Vane		339 294	1233.44 1251.24	801.96 801.92			443 3443	895.68 897.33				430 3452	965.81 970.46	
	22 563. 27 570.			Max Pool Thalweg		289 286	1261.08 1268.37	801.91			3441 3445	908.5 927.39				3454 418	976.6 987.21	
	30 580.			Thalweg		283	1268.37	801.78 801.73			429	927.39 940.11				3456	988.17	
2	32 589. 34 604.			Thalweg Thalweg		263 258	1297.01 1304.08	801.73 801.77			3447 3449	941.74 957.31	807.64	1 LBKF I LBKF		3457 470	1003.13 1005.07	
2	36 612.		807.08	Thalweg		255	1323.84	801.47			3451	978.93				3458	1012.73	806.54 RBKF
	38 623. 40 640.			Thalweg Thalweg		244 217	1341.65 1366.39	801.44	Water Water		411 3453	984.22 997.5				3460 478	1027.71 1037.47	
	40 040.		807.93	Rock Vane		215	1373.34	801.15	Water		3455	1015.06				3462	1050.31	806.1 RBKF
	44 651. 46 656.			Thalweg Max Pool		212 206	1381.38 1401.24	801.15 801.12			3459 473	1024.34 1032.01				482 3466	1076.42 1081.11	
2	50 668.	.28	807.11	Thalweg	1	204	1409.16	800.87	Water		3461	1050.72	805.91	I LBKF		3468	1105.25	805.35 RBKF
	52 679. 54 682.			Thalweg Head of Riffle		196 192	1417.7 1424.58	800.88 800.86			3463 484	1070.44 1082.56				487 3470	1110.4 1126.06	
2	56 693.	.89	807.32	Thalweg	1	187	1443.66	800.8	Water		3465	1085.85	805.7	7 LBKF		3472	1134.21	804.98 RBKF
	58 707 60 717.			Thalweg Thalweg		165 162	1477.36 1500.8	800.78 799.93			3467 3471	1096.56 1105.55				3474 3477	1144.28 1184.03	
2	62 722.	.47	806.42	Head of Pool	1	156	1508.52	799.94	Water		491	1112.63	805.36	B LBKF		3478	1200.35	805.06 RBKF
	64 729. 66 735.			Thalweg Thalweg		149 145	1530.98 1539.06	799.96 799.39			494 3473	1124.64 1137.36				1343 3480	1217.98 1254.57	
2	68 737.	15	806.72	Thalweg	1	142	1551.33	799.38	Water		1384	1145.09	804.92	2 LBKF		3482	1268.37	804.51 RBKF
	70 740. 73 748.			Max Pool Thalweg		136 131	1571 1581.15	799.2 799.14	Water Water		1356 1354	1155.87 1164.96				3484 3486	1283.33 1300.54	
2	76 7	65	807.04	Head of Riffle	1	138	1593.91	799.1	Water		502	1165.99	804.83	3 LBKF		3488	1300.84	803.95 RBKF
	78 777 80 783.			Thalweg Thalweg		133 119	1605.53 1627.1	798.97 798.98			3475 1348	1171.14 1174.33				1261 3489	1312.84 1317.94	
2	82 787	7.4	806.09	Thalweg	1	116	1640	798.92	Water		1344	1184.47	805.07	7 LBKF		3491	1326.65	6 803.93 RBKF
	84 793. 86 800.			Thalweg Thalweg		114 110	1659.18 1663.95	798.29 798.2	Water Water		3476 1340	1184.49 1195.73				3493 1238	1337.91 1370.85	
2	88 817.	.11	806.43	Thalweg	1	105	1668.13	798.19	Water		3479	1199.2	805.27	7 LBKF		1213	1372.99	803.21 RBKF
	90 832. 67 834.			Thalweg Thalweg		092 082	1700.45 1746.56	797.95 797.88			1335 1298	1211.03 1254.42				3495 3497	1375.67 1385.76	
4	63 852.	.59	806.19	Thalweg	1	077	1746.98	797.6	Water		3481	1255.76	804.15	5 LBKF		3499	1402.35	6 802.73 RBKF
	59 867. 55 871.			Thalweg Head of Riffle		074 062	1753.2 1768.47	797.59 797.6	Water Water		1295 3483	1269.09 1280.31				1193 1181	1421.82 1476.21	
4	51 876.	.07	806.47	Rock Vane	1	058	1778.32	797.57	Water		1277	1287.12	804.07	7 LBKF		1175	1480.65	802.57 RBKF
	45 880. 40 894.			Head of Pool Max Pool		054 050	1797.44 1831.02	797.56 797.49			1268 3490	1297.09 1318.24				3566 3569	1548.68 1559.19	
4	36 900.	75	805.17	Thalweg	1	043	1837.14	795.92	Water		1260	1321.65	803.38	3 LBKF		3572	1566.55	6 801.5 RBKF
	31 905. 26 933			Head of Riffle Head of Pool		039 025	1849.91 1876.53	795.83 795.85			3492 3494	1335.67 1347.15				1134 3581	1574.02 1582.11	
4	20 951.	.81	804.73	Thalweg		021	1883.69	795.81			3496	1366.63	803.38	3 LBKF		1126	1585.16	801.67 RBKF
	16 960. 09 982.			Head of Riffle Max Pool							1239 3498	1370.73 1375.8				3582 1106	1610.5 1627.72	

407	985.9	804.41	Head of Riffle
404 402	1004	804.4 803.96	Thalweg Thalweg
399	1007.83 1016.18	803.98	Max Pool
397	1026.32	803.97	Thalweg
395	1032.34	804.32	Head of Riffle
393	1042.33	803.89	Thalweg
391	1055.96	803.28	Head of Pool
389	1065.08	802.55	Max Pool
387	1076.09	803.04	Thalweg
383	1084.04	802.97	Head of Riffle
385 381	1096.72 1101.84	803.09 802.5	Thalweg Max Pool
379	1107.49	802.19	Head of Riffle
377	1126.44	802.43	Thalweg
375	1133.57	802.09	Thalweg
373	1138.33	802.2	Thalweg
1382	1145.04	802.18	Head of Riffle
371	1145.55	802.37	Head of Riffle
1363	1160.6	801.85	Thalweg
1361	1166.52 1179.85	801.88	Thalweg
1357 1352	1179.85	801.53 801.48	Thalweg Thalweg
1349	1201.15	801.46	Max Pool
1345	1203.46	801.65	Head of Riffle
1341	1214.88	801.54	Thalweg
1336	1223.54	801.36	Thalweg
1338	1233.67	801.65	Thalweg
1296	1238.5	801.92	HR
1293	1251.29	801.63	Thalweg
1288	1260.77	801.76	Head of Riffle
1285	1268.69	801.63	Rock Vane
1282 1279	1269.77 1275.2	801.3 800.85	Thalweg Max Pool
1273	1278.39	801.45	Head of Pool
1270	1282.85	800.09	Max Pool
1266	1291.76	801.15	Thalweg
1262	1296.93	801.12	Thalweg
1257	1304.28	801.6	Head of Riffle
1254	1323.69	801.2	Head of Pool
1250	1328.77	800.55	Max Pool
1247	1333.9	800.93	Thalweg
1243	1341.62	801.02	Thalweg
1240 1216	1351.61 1366.48	801.23 800.69	Head of Riffle Head of Pool
1216	1300.40	800.69	Thalweg
1214	1380.92	800.12	Max Pool
1208	1389.67	800.81	Thalweg
1205	1401.19	801.1	Head of Riffle
1203	1408.95	800.51	Thalweg
1199	1415.42	800.58	Head of Pool
1195	1417.56	800.28	Max Pool
1191	1424.3	800.63	Thalweg
1186	1443.1	800.52	Thalweg
1182 1179	1452.3 1459	800.5 800.45	Thalweg Head of Pool
1172	1466.47	799.65	Max Pool
1168	1471.28	799.88	Head of Glide
1164	1476.58	800.72	Head of Riffle
1161	1500.83	799.57	Head of Pool
1157	1504.89	798.82	Max Pool
1155	1508.07	799.42	Thalweg
1151 1148	1520.22	799.4	Thalweg
1148	1530.86 1539.8	799.79 799.14	Head of Riffle Head of Pool
1144	1550.85	798.72	Max Pool
1135	1571.07	798.6	Thalweg
1130	1581.46	798.82	Thalweg
1124	1590.22	798.99	Head of Riffle
1137	1594.18	798.82	Head of Riffle
1132	1605.22	798.34	Thalweg
1127 1118	1610.23	798.77	Head of Pool
	1627.44 1640	798.65	Thalweg
1115 1113		798.74 798.21	Head of Riffle Head of Pool
1109	1658.98 1663.79	798.58	Rock Vane
1108	1664.49	797.5	Max Pool
1104	1668.03	797.9	Thalweg
1095	1686.25	797.47	Thalweg
1091	1700.43	797.59	Thalweg
1078	1709.71	797.57	Thalweg
1071	1726.98	797.76	Thalweg
1081 1076	1746.5		Rock Vane
1076	1747.31 1753.2	796.98	Thalweg Thalweg
1073	1753.2	796.23 796.52	Max Pool
1061	1768.35	797.27	Thalweg
1057	1778.02	796.81	Max Pool
1053	1797.25	797.09	Thalweg
1049	1812.66	797.32	Head of Riffle
1046	1832.61	796.78	Rock Vane
1042	1836.99	795.33	Thalweg
1038 1034	1849.67 1854.72	795.03 794.21	Head of Pool Thalweg
1034	1854.72	794.21	Rock Vane
1027	1868.34		Head of Pool
1024	1876.7	794.12	Thalweg
1020	1883.59	794.17	Max Pool
1016	1888.33	794.93	Head of Glide
1012	1897.43	795.86	Head of Riffle
1009	1906.81	794.98	Thalweg
1009		794.98	Thalweg Rock Vane

3500	1382.45	803.21	LBKF
3526	1390.43	803.37	LBKF
1201	1398.44	802.76	LBKF
3528	1404.96	803.11	LBKF
1198	1409.92	802.99	LBKF
3531	1418.5	802.89	LBKF
3534	1429.72	803.14	LBKF
1188	1437.72	802.83	LBKF
3537	1443.6	803.01	LBKF
3543	1459.56	802.48	LBKF
3552	1471.94	802.41	LBKF
3549	1488.17	802.42	LBKF
1163	1488.77	802.24	LBKF
3555	1495.23	802.34	LBKF
3563	1498.33	802.28	LBKF
1150	1526.85	802.19	LBKF
1146	1546.81	802.08	LBKF
3575	1561.4	801.65	LBKF
3578	1581.06	801.78	LBKF
1117	1592.51	801.76	LBKF
1112	1605.14	801.63	LBKF
3585	1606.05	801.86	LBKF
3588	1619.09	802.29	LBKF
1103	1624.8	801.87	LBKF
3591	1642.86	801.05	LBKF
3600	1643.09	801.02	LBKF
1097	1649.57	800.82	LBKF
1099	1649.8	800.73	LBKF
3603	1671.1	801.04	LBKF
3611	1680.2	801.61	LBKF
1088	1680.62	801.33	LBKF
1084	1693.98	800.64	LBKF
3617	1695.61	800.71	LBKF
1063	1714.59	800.13	LBKF
3618	1720.04	800.08	LBKF
1075	1720.52	799.86	LBKF
3621	1723.12	800.81	LBKF
3619	1750.23	800.01	LBKF
3620	1757.62	800.25	LBKF
1041	1796.48	800.01	LBKF
1032	1816.43	799.08	LBKF

1098	1653.15	800.58 RBKF
3597	1661.88	800.92 RBKF
1089	1665.32	800.54 RBKF
3604	1669.84	801.08 RBKF
3607	1694.61	801.17 RBKF
1080	1705.08	800.34 RBKF
3608	1710.73	800.35 RBKF
3622	1727.76	800.33 RBKF
3628	1754.47	800 RBKF
3629	1778.88	800.32 RBKF
1051	1778.98	800.62 RBKF
1048	1795.41	799.3 RBKF
3630	1797.3	799.94 RBKF
3631	1812.83	798.83 RBKF
3632	1836.35	798.82 RBKF
1033	1855.07	799.09 RBKF
3633	1856.13	799.47 RBKF
1029	1866.65	798.57 RBKF
3634	1876.16	798.68 RBKF
1014	1904.21	797.99 RBKF
1006	1933.17	797.72 RBKF

Point

Station

Point	Station	Elevation	Description
3009	2.68	811.21	Max Pool
3011	19.93	811.91	Thalweg
3013	32.9	811.97	•
3014	54.96	812	Head of Riffle
3016	63.51	811.56	Thalweg
3018	72.2	811.69	Thalweg
3020	83.22	811.78	XV
3024	116.23	811.26	Max Pool
3026	127.38	811.8	XV
3028	135.55	810.67	Thalweg
3029	145.01	811.7	Thalweg
3031	161.44	811.71	Head of Riffle
3033	180.79		
3035			
3037			
3039			0
3041			
3043			Thalweg
3045			Thalweg
3047			0
3049			0
3051			0
3053			Thalweg
3054			
3056			•
3058			
3060			
3062			
3064		810.11	0
3066 3068			Thalweg Thalweg
3008		810.47	-
3070		809.07	
3072			Thalweg
3076			•
3078			Thalweg
3080			Thalweg
3082			•
3084		809.98	•
3086			•
3088			
3090			
3092			
3094			
3096			Max Pool
3098			XV
3100			Thalweg
3102	572.96	807.76	Thalweg

3020	83.22	811.78	Rock Vane
3026	127.38	811.8	Rock Vane
3041	221.4	811.49	Rock Vane
3054	320.09	811.22	Rock Vane
3070	389.11	810.34	Rock Vane
191	510.46	809.67	Rock Vane
3098	563.33	809.1	Rock Vane
3112	647.5	808.04	Rock Vane
3263	733.17	807.18	Rock Vane
3274	874.91	806.34	Rock Vane
3340	1268.64	801.61	Rock Vane
3595	1662.93	798.51	Rock Vane
3623	1745.38	797.84	Rock Vane
3642	1831.48	797.15	Rock Vane
3649	1865.74	795.95	Rock Vane
3657	1914.73	795.83	Rock Vane

Elevation Description

 3104 3106 3108 3110 3112 3250 3114 3252 3116 3117 3254 3266 3263 3264 3266 3268 3270 3272 3274 3266 3288 3290 3282 3284 3290 3288 3290 3288 3290 3288 3290 3284 3290 3288 3300 3302 3304 3308 3310 3312 3314 3316 3320 3322 3324 3320 3322 3324 3320 3322 3324 3320 3322 3324 3326 3300 	588.38 599.44 607.12 622.25 647.5 648.81 651.92 655.33 656.58 673.92 674.51 694.1 714.59 722.53 733.17 740.16 762.31 772.89 799.03 830.46 874.91 885.13 898.21 907.03 939.35 949.67 961.2 970.47 961.2 970.47 978.17 985.32 1001.76 1015.27 1031.53 1053.24 1078.74 1085.75 1098.35 1101.14 106.05 1127.9 1134.27 1134.27	802.87 802.6 803.33	Max Pool XV Thalweg Head of Riffle Head of Run XV Thalweg Max Pool Head of Riffle Head of Pool Max Pool Thalweg Head of Riffle Head of Pool Max Pool Head of Riffle Head of Pool Max Pool Head of Riffle Head of Riffle
3322 3324	1141.28 1177.98	802.49 801.77	Head of Riffle Head of Pool
3330	1221.86	801.59	Thalweg
3331 3334	1238.45 1259	801.96 801.87	Head of Riffle Thalweg
3336	1264.85	801.29	Head of Pool
3338	1267.88	801.32	Max Pool
3340 3342	1268.64 1274.55	801.61 801.12	XV Thalweg

3348	1301.34		Head of Riffle
3350	1322.48	801.14	Head of Pool
3352	1329.34	800.79	Max Pool
3354	1339.24	801.17	Thalweg
3356	1351.04	801	Head of Riffle
3358	1367.41	800.54	Head of Pool
3360	1374.53	800.09	Max Pool
3525	1391.16	801.13	Head of Riffle
3529	1406.38	800.74	Head of Pool
3535	1427.63	800.79	Head of Run
3542	1445.73	800.75	
3538	1445.84	800.56	
3544	1462.77	799.51	Max Pool
3547	1474.25	800.73	
3550	1496.83	800.02	Head of Pool
3553	1506.09	798.81	Max Pool
3556	1523.21	800.05	Head of Riffle
3558	1539.55	799.43	Head of Pool
3561	1543.29	798.6	Max Pool
3564	1559.51	799.29	Head of Riffle
3567	1565.82	799.14	Head of Pool
3570	1572.97	798.91	Max Pool
3573	1579.83	799.16	Head of Riffle
3576	1601.89	798.91	Head of Pool
3579	1614.75	798.09	Thalweg
3583	1619.92	798.54	Thalweg
3586	1639.47	799.05	Head of Riffle
3589	1654.16	798.32	Head of Pool
3592	1661.52	797.55	Max Pool
3595	1662.93	798.51	XV
3601	1684.26	797.38	Thalweg
3605	1694.1	797.9	Thalweg
3609	1726.12	798.07	Thalweg
3612	1729.85	797.89	Head of Pool
3615	1737.42	796.86	Max Pool
3623	1745.38	797.84	XV
3626	1752.39		Thalweg
3635	1771.77		Thalweg
3637	1790.07		Thalweg
3642	1831.48	797.15	
3645	1836.21		Thalweg
3647	1842.81	796.15	
3651	1856.98		Max Pool
3649	1865.74	795.95	
3653	1883.51		Thalweg
3655	1894.72	796.15	
3657	1914.73	795.83	
3659	1929.24		Head of Pool
3660	1936.25	793.05	Max Pool

Photo Point 1 Downstream 2003 Station 00+00

Photo Point 1 Downstream 2004 Station 00+00

Photo Point 1 J-Hook 2003 Station 00+00

Photo Point 1 J-Hook 2004 Station 00+00

Photo Point 2 Downstream 2003 Station 01+60

Photo Point 2 Downstream 2004 Station 01+60

Photo Point 2 Upstream 2003 Station 01+60

Photo Point 2 Upstream 2004 Station 01+60

Photo Point 3 Downstream 2003 Station 03+60

Photo Point 3 Downstream 2004 Station 03+60

Photo Point 3 Upstream 2003 Station 03+60

Photo Point 3 Upstream 2004 Station 03+60

Photo Point 4 Downstream 2003 Station 05+00

Photo Point 4 Downstream 2004 Station 05+00

Photo Point 4 Upstream 2003 Station 05+00

Photo Point 4 Upstream 2004 Station 05+00

Photo Point 5 Downstream 2003 Station 05+70

Photo Point 5 Downstream 2004 Station 05+70

Photo Point 5 Upstream 2003 Station 05+70

Photo Point 5 Upstream 2004 Station 05+70

Photo Point 6 Downstream 2003 Station 07+40

Photo Point 6 Downstream 2004 Station 07+40

Photo Point 6 Upstream 2003 Station 07+40

Photo Point 6 Upstream 2004 Station 07+40

Photo Point 7 Downstream 2003 Station 09+10

Photo Point 7 Downstream 2004 Station 09+10

Photo Point 7 Upstream 2003 Station 09+10

Photo Point 7 Upstream 2004 Station 09+10

Photo Point 8 Downstream 2003 Station 12+40

Photo Point 8 Downstream 2004 Station 12+40

Photo Point 8 Upstream 2003 Station 12+40

Photo Point 8 Upstream 2004 Station 12+40

Photo Point 9 Downstream 2003 Station 13+25

Photo Point 9 Downstream 2004 Station 13+25

Photo Point 9 Upstream 2003 Station 13+25

Photo Point 9 Upstream 2004 Station 13+25

Photo Point 10 Downstream 2003 Station 14+90

Photo Point 10 Downstream 2004 Station 14+90

Photo Point 11 Downstream 2003 Station 17+25

Photo Point 11 Downstream 2004 Station 17+25

Photo Point 11 Upstream 2003 Station 17+25

Photo Point 11 Upstream 2004 Station 17+25

Photo Point 12 Downstream 2003 Station 18+20

Photo Point 12 Downstream 2004 Station 18+20

Photo Point 12 Upstream 2003 Station 18+20

Photo Point 12 Upstream 2004 Station 18+20

Lyle Creek Stream Restoration Catawba County, NC

<u>Average</u> 2 ŝ Rank (Importance) 79.3 3.4 100 13.8 3.4 Rel. Density (%) 1 29 1160 0 1160 23 4 -**Density** 6.8 46.3 6.5 40.4 100 Rel. Density (%) Rank (Importance) 100 100 Rel. x-sec (%) 3.1 3.1 176.7 176.7 **359.7** 314.2 **314.2** 777.3 $\begin{array}{c} 0.8\\ 1.26\\ 0.28\\ 0.28\\ 0.22\\$ 50.3 50.3 <u>Σ X-sec. (mm²)</u> el. cover (%) Rank (Importance) 10.6 4.3 4.3 3 4.3 6 4.3 1 4.2 6 1 100 + + 7.5 7.5 9 4 Diameter (mm) Radius (mm) Density Rel. cover (%) 100 **100** 12 12 12 ω 20 Rel. 25 17 20 9 8 -5 2 2 5 5 **7** Cover (%) Cover (%) Height (cm) Planted trees per acre Natural regen. trees per acre Ambrosia aretemisifolia **Totai** Species Eupatorium virginiana Liriodendron tulipifera Total Trees per acre Lespedeza cuneata Herb Stratum <u>Species</u> Alnus serrulata Total Juncus effusis **Overall Total** Quercus sp. **Total** Quad 1 Betula nigra Fraxinus sp. Species Shrubs Trees Total Total Total

43.1

30.0

5.0

21.9

Lyle Creek Stream Restoration Catawba County, NC

Quad 2

			:				:		:		
Species	Height (cm)	Height (cm) Diameter (mm) Hadius (mm)			<u>2 X-sec. (mm²)</u>	Hel. x-sec (%)	Density		Rel. Density (%) Rank (Importance)	Average	ige
Betula nigra	40	ŝ		2.5	19.6						
	3000	432		216	146574.1						
	3000	287		143.5	64692.5						
	3000	298		149	69746.5						
	54	9		ო	28.3						
Total					281061.0	99.3	2	66.7	،	ω	83.0
Juniperus virginiana	214	50		25	1963.5						
Total					1963.5	0.7	-	33.3	2	•	17.0
Overall Total					283024.5	100	e	100			
Total Trees per acre							120				
Planted trees per acre							0				
Natural regen. trees per acre							120				
Shrubs											
Species	Cover (%)	Rel. cover (%)	Density		Rel. Density (%)	Rank (Importance)					
Salix nigra	2	2			100						
Total	N	N		100	100						
Herbs											
Species	Cover (%)	Rel. cover (%)	Rank (Importance)	nce)							
Carex sp.	60	60		-							
Juncus effusus	10	10		ო							
Panicum clandestinum	30	20		2							
Total	100	100									

Quad 3

Quad 3										
Trees Species	Height (cm) Diameter (mm) Radius (mm)	ameter (mm) F	adius (mm)	Σ X-sec. (mm²)	Rel. x-sec (%)	Densitv	Rel. Densitv (%)	Rel. Density (%) Rank (Importance)	Average	ade
Fraxinus sp. Total	120	25	12.5	490.9 490.9	0.02	-	11.1	3		5.57
Platanus occidentalis Total	60	18	თ	254.5 254.5	0.01	-	1.11	3		5.56
Carya sp. Totol	15 40	ΝΩ	2.5	19.6 3.1		c				
		•		8.27 77	00	N	777	N		
Lirlodenaron tulipitera	3000 3000 3000	1 1500 552 555	0.5 750 276 277.5	0.8 1767145.9 239314.0 241922.3						
Total				2248382.9	6.66	e	33.3	3 1	Ū	66.64
Quercus sp. Total	20	26	က	530.9 530.9	0.02	-	11.1	3		5.57
<i>Betula nigra</i> Total Overall Total Total Trees per acre Planted trees per acre Natural regen. trees per acre	30 sr acre	<u>5</u>	σ	113.1 113.1 2249795.0	0.01	9 7 360 80 280 280	11.1	φ		5.56
Shrubs Species cornus amomum salix nigra Total	Cover (%) Re 10 10 20	Rel. cover (%) 50 50 100	Density 10 6 16	<u>Rel. Density (%)</u> 62.5 37.5 100	Rank (Importance) 1 2					
Herbs <u>Species</u> Pilia pumila Carex sp. Juncus effusis Ambrosia artemisifolia Total	Cover (%) Rt 30 10 70 120	Rel. cover (%) <u>Ink</u> 25.0 8.3 58.3 8.3 8.3 8.3 100	ik (Importance) 2 3 3 3	ลี						